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Tübingen, Germany
and Microsoft Corp.

Email: work@lcayton.com

Abstract—We develop methods for accelerating metric sim-
ilarity search that are effective on modern hardware. Our
algorithms factor into easily parallelizable components, making
them simple to deploy and efficient on multicore CPUs and
GPUs. Despite the simple structure of our algorithms, their
search performance is provably sublinear in the size of the
database, with a factor dependent only on its intrinsic dimen-
sionality. We demonstrate that our methods provide substantial
speedups on a range of datasets and hardware platforms. In
particular, we present results on a 48-core server machine, on
graphics hardware, and on a multicore desktop.
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I. INTRODUCTION

We study methods to accelerate nearest neighbor search
on modern parallel systems. We work in the standard metric
nearest neighbor (NN) setting: given a database X , return
the closest point to any query q, where closeness is measured
with some fixed metric. Though the problem setting is by
now well-studied, there are two recent developments that
provide a different focus for this work. The first develop-
ment comes from studies in data analysis and advances in
theoretical computer science, where the notion of intrinsic
dimensionality has been refined and profitably exploited
to manage high-dimensional data. The second development
comes from the computer hardware industry: CPUs are
virtually all multicore now and GPUs have rapidly evolved
into powerful secondary devices for numerical computation,
forcing a renewed interest in parallelism.

High-dimensional data challenges nearly all methods for
accelerating NN search. Unfortunately, complicated, high-
dimensional data is the norm in many domains that rely
on NN search, such as computer vision [1], bioinformatics
[2], and data analysis in general [3]. Because such data
must be dealt with, researchers have explored data properties
that might be exploited to accelerate search. A compelling
property is the intrinsic dimensionality of a data set; the idea
is that often data only appears high-dimensional (i.e., each
element has many features), but is actually governed by only
a few parameters. In recent years, this type of data has been
studied extensively and is now believed to be widespread; in
machine learning, for example, several methods have been
developed to reveal the intrinsic structure of data [4], [5].

In research on accelerated NN retrieval, a renewed focus on
intrinsic dimensionality in recent years has yielded methods
with strong theoretical guarantees [6], [7] and state-of-the-
art empirical performance [8].

The end goal of all of this work on NN is, of course, to
make NN search run fast. While properties of data are im-
portant for computational efficiency, equally important is the
machine hardware on which search actually runs. Hardware
properties are especially important now, as the machines in
use for everyday data analysis and database operations are
fundamentally different than they were even a decade ago.
In particular, standard computer chips are multicore with
vector (SIMD) units, and GPUs have become popular as sec-
ondary devices for data-intensive processing. These modern
processors have very impressive computational capabilities,
but fully exploiting it requires considerable parallelism.

The shift towards parallelism in hardware necessitates a
refocusing in algorithm design and software engineering
methods [9]. At the level of algorithm design, advances
in algorithms and data structures may not be useful unless
they can be effectively parallelized. At the level of software
development, developing efficient implementations on paral-
lel systems is challenging, so parallel primitives and design
patterns are required to ease the burden on programmers.
For the case of NN search, the modern search algorithms
discussed were developed for sequential systems, and seem
quite difficult to deploy on modern hardware. This is a major
practical limitation.

In this work, we develop a new approach to NN search
that is both provably sensitive to intrinsic structure and that
is effective on modern CPUs and GPUs. Our algorithms are
based on fundamental ideas from metric similarity search,
and are designed carefully for two important goals. First,
our design choices allow us to rigorously bound the search
complexity of our methods. Equally important, these choices
allow us to factorize our algorithms into a basic primitive
that is simple to parallelize, making them effective and
relatively easy to implement on different systems.

Our methods are of immediate practical use. We demon-
strate their performance benefits on a range of modern
platforms: a 48-core server machine, a GPU, and a multicore
desktop.



II. RELATED WORK

The focus of the present work is unique; as far as we
know, it is the only work to simultaneously make use of
modern algorithmic developments and modern hardware.
Still, the ideas behind our methods are based on a substantial
amount of previous work: the algorithmic ideas are based
on techniques from metric similarity search; the results
on intrinsic dimensionality are related to ideas developed
mostly in the theory and data analysis communities; and the
motivation behind the project comes from recent trends in
computer hardware, especially as related to databases.

The data structure and algorithm in this work are based
on two fundamentals of algorithms for metric data: space
decomposition and the triangle inequality. These pillars are
used in virtually all work on metric NN search; see the
surveys of Chávez et al. and Clarkson for detailed overviews
[10], [11]. Two of the most empirically effective structures
are AESA [12] and metric ball trees [13], [14], both of which
have spawned many relatives.

A long-standing problem in similarity search is the diffi-
culty of dealing with high-dimensional data; e.g. [15]–[17].
The basic challenge is that space-decomposition structures
that reduce the work for NN retrieval seem to have perfor-
mance that scales exponentially with the dimensionality of
the data, rendering them useless to all but the smallest prob-
lems. Recently, there have been two promising directions of
work that attempt to deal with this challenge.

The first is called Locality Sensitive Hashing (LSH) [18].
LSH has retrieval performance that is provably sublinear,
independent of the underlying dimensionality. This was
a major theoretical breakthrough and the data structure
has been successfully deployed on some tasks (e.g. [2]).
However, LSH has some limitations: it can only provide ap-
proximate answers, it is defined only for particular distance
measures (not at the generality of metrics), and setting the
parameters correctly can be complex [19].

The second line of work, upon which we build, is based
on the notion of intrinsic dimensionality. The basic idea
here is that many data sets only appear high-dimensional,
but are actually governed by a small number of parameters.
Within data analysis and machine learning, the idea of
low-dimensional intrinsic structure has become extremely
popular and such structure is believed to be common in many
data sets of interests [4], [5].

In the context of NN search, the focus on intrinsic dimen-
sionality has been profitable theoretically and empirically.
In particular, the expansion rate is a notion of metric space
dimensionality that is central to a series of algorithms with
strong runtime bounds and excellent performance in practice
[6]–[8], [20].

Perhaps the two methods most similar to the present work
are the Cover Tree [8] and the GNAT [16]; let us distinguish
this research from the present work. The GNAT uses a

simple space decomposition based on representatives from
the database, much as we do, and also discusses the idea
of intrinsic dimensionality. However, the relationship of the
GNAT’s search performance and the intrinsic dimensionality
is only discussed in an informal, heuristic way, whereas
we give rigorous runtime guarantees. These rigorous bounds
require a search algorithm that is different than that of the
GNAT. Additionally, parallelization is not discussed in [16].

The Cover Tree has rigorous guarantees on the query
time dependent on the expansion rate and has empirical
performance that is state of the art. Even so, our algorithms,
data structure, and theory are substantially different; in
particular, the Cover Tree is a deep tree and is explored in a
conditional way that seems quite difficult to parallelize. We
compare our method with the Cover Tree in the experiments.

Next, we touch on the major inspiration for this paper:
the use of hardware to accelerate data-intensive processes.
Impelled by the sudden ubiquity of multicore CPUs and
the development of GPUs for general-purpose computation,
this area of research has exploded in the last decade; let
us provide a couple of inspiring examples. A relatively
early work develops methods to off-load expensive database
operations onto the GPU [21]. A very recent piece of work
tunes basic tree search algorithms (such as for index lookup)
to be effective on modern multicore CPUs and GPUs [22].

Finally, there have been a few papers related to NN and
manycore. One paper suggests simply running brute force
search on a GPU to accelerate NN search [23]; this simple
approach provides a surprising amount of acceleration over
computation on sequential CPUs [24]. A very recent paper
studies accelerated NN specifically for a multicore CPU
platform, but this method offers no runtime guarantees [25];
in particular, its running time is not sublinear in the database
size.

III. CHALLENGES OF MANYCORE

In this section, we describe the challenges of algorithm
design for manycore systems.

Manycore simply means a system with a high-core count,
such as a GPU or 48-core system. From the perspective of
algorithm design, the characteristic feature of a manycore
system is not so much a certain minimum core count as it is
the requirement that algorithms decompose into hundreds or
thousands of pieces—i.e., algorithms must be fundamentally
parallel. As a concrete example, consider the difference
between designing an algorithm for a dual-core chip and
for a GPU. Effectively utilizing a dual-core chip might be
possible by re-engineering a sequential algorithm; however,
fully utilizing a modern GPU requires an algorithm that
decomposes into thousands of threads, which is a vastly
different regime than the sequential one.

The main challenge of manycore algorithm is simply
finding enough parallelism is an a problem. Beyond this
basic challenge, there are a variety of performance pitfalls



to be avoided. First, there can be a significant penalty
for synchronization (and more generally, communication)
among threads. In particular, computational resources can be
wasted as some threads sit idle waiting for others, and the
cost of exchanging messages between threads can be non-
trivial. Second, load-balancing can be a major challenge; not
only does a problem have to be decomposed into thousands
of pieces, those pieces need to be roughly the same size.
Third, conditional computation can be inefficient. This is
especially true on GPUs, on account of their wide vector
units and limited branch prediction ability. Finally, access to
memory can be a bottleneck. Though this bottleneck exists
on single-core systems, it is exacerbated by a multiplicity
of threads accessing the memory system, and, in the case of
GPUs, primitive caching. See e.g. [26] for more details on
these challenges.

As an illustrating example of these principles, and to
further motivate the present work, let us consider porting
a standard sequential NN data structure over to a manycore
system. We use metric trees as an example [13]. This data
structure is popular, effective, and closely related to the state-
of-the-art Cover Tree. Moreover, its basic structure is quite
similar to many NN schemes.

The data structure is a deep tree, with nodes that are
associated with regions of space that contain a subset of
the database. Querying this data structure requires a depth-
first exploration of the tree. This exploration involves an
interleaved series of distance computations, bound com-
putations, and distance comparisons. These computations
and comparisons guide the exploration process, resulting in
computational structure that is conditional. Put differently,
the specific distance calculations made at one step depend
on the comparisons from the previous step.

To implement the search algorithm on a manycore system,
we must first decide how to decompose the search algorithm
into subtasks. The two natural parallelization schemes are
distributing different nodes of the tree across threads and
distributing queries across threads.1 Unfortunately, both have
problems. The node-parallel scheme can lead to significant
thread imbalance since many nodes will be not be accessed
during a search. This scheme also requires significant com-
munication between threads. The other scheme, parallelizing
over queries, is only appropriate in the case when many
queries are run at once. Even when this scheme is ap-
propriate, it can lead to a work imbalance depending on
the location of queries and the distribution of the database.
Another drawback of this scheme is that it makes inefficient
use of the memory bus: if multiple queries all need to access
a particular portion of the database, it is much more efficient
to do one load from memory rather than many loads. Hence
both of the natural parallelization schemes are possible, but

1Note that simply distributing the database elements across threads is a
special case of distributing the nodes across threads.

come with major drawbacks.
An additional complication is the conditional nature of

the computation, which seems endemic to sequential metric
search algorithms. This conditional structure—in which the
database elements that are retrieved and examined depend on
the results of inequality evaluations—requires a complicated
series of memory accesses which are difficult to hide the
latency of; as a result it is difficult to keep the (many)
processing elements busy.

In addition to performance considerations, there is the
major issue of program complexity: developing a manycore
implementation of a deep tree structure with the requi-
site synchronization is highly non-trivial. This difficulty
is compounded because the goal of the implementation is
to accelerate NN search, meaning that many performance
considerations must be examined carefully.

Though some of these difficulties could perhaps be over-
come, the basic structure of the metric tree search algorithm
is not a natural fit for a manycore architecture: it does not
seem to decompose easily into many independent pieces. In
sharp contrast, brute force search parallelizes trivially, as we
describe in the next section.

IV. THE BRUTE FORCE PRIMITIVE

In the last section, we explored the possibility of fitting a
metric tree onto a manycore system and encountered many
difficulties. In this section, we describe the brute force search
approach to NN search, which is simple to parallelize. But
though it parallelizes easily, brute force search requires much
more total work than an intelligent tree-based search. Hence
we introduce brute force here not as a complete solution
to NN search, but as a useful primitive to build intelligent
search algorithms on top of. By using brute force as a
primitive, our search algorithms—developed in the coming
sections—are able to reduce the work for NN search and
parallelize effectively.

Given a set of queries Q and a database X with n
elements, finding the NNs for all q ∈ Q can be achieved
by a series of linear scans. For each query q, the distance
between q and each x ∈ X is computed, the distances are
compared, and the database point that is closest is returned.
We denote this subroutine as BF(Q,X). If L is some set of
IDs (i.e. L ⊂ {1, . . . , n}), then brute force search between
Q and this subset of the database is denoted BF(Q,X[L]).

The work required for BF(Q,X) is O(n) per query; we
later prove that our accelerated search algorithms have work
only roughly O(

√
n), which is performed in two brute force

calls BF(Q,X[L1]) and BF(Q,X[L2]), where lists L1 and
L2 are determined by our algorithm.

Parallelizing BF(Q,X) is relatively straightforward; we
provide a brief overview here, then go into detail in section
VIII. We break the procedure down into two steps: a distance
computation step, and a comparison step. In the distance
computation step, all pairs of distances are computed. This



has virtually the same structure as matrix-matrix multiply,
and hence block decomposition approaches are effective. In
the case where there is only a single query presented at
a time (e.g. a stream of queries), the distance computation
step of BF(q,X) has the structure of a matrix-vector multi-
plication. In both cases, the parallelization is extremely well-
studied.2

The second step is the comparison: for each query, the dis-
tances must be compared, and the nearest database element
returned. This is simple to do in parallel systems as well; the
problem can simply be plugged into the standard parallel-
reduce paradigm where comparisons are made according to
an inverted binary tree.

The simple structure of BF makes it relatively sim-
ple to manage the challenges of manycore implementation
described the in the last section. In contrast, accelerated
NN routines seem to depend on a complex computational
structure. A major contribution of the present work is in
demonstrating that a much simpler structure can be substi-
tuted without significant loss.

With the brute force primitive in place, we proceed to
discuss our data structure and algorithms, all of which will
be built from this primitive.

V. DATA STRUCTURE

We discuss the data structure underlying our methods in
this section, which we call the Random Ball Cover (RBC).
This is a simple, single-level cover of the underlying metric
space. The basic idea is to use a random subset of the
database as representatives for the rest of the DB.

The database is denoted X = {x1, . . . , xn} and the metric
in use is denoted ρ(·, ·). The data structure consists of a
random subset of the database, which will be of size about
O(
√
n); we make this precise later. This set of random

representatives will be denoted R. It is built by choosing
each element of the database independently at random with
probability nr/n, where the exact value of nr is discussed
in the theory section. In expectation, there will be nr
representatives chosen—one can think of the symbol nr as
shorthand for number of representatives.

Each representative owns some subset of the database.
The list of points that a representative r owns is denoted
Lr, which we will at times refer to as an ownership list. In
principle, Lr could contain any subset of the database, but
for our algorithms Lr will contain points near to r.

Finally, for each representative r, a radius is stored. This
radius is defined as the distance from r to the furthest point
that it owns:

ψr = max
x∈Lr

ρ(x, r).

2See, for example, the workshop series Parallel Matrix Algorithms and
Applications.

To summarize, the RBC data structure is simply a set
of representatives R, along with an ownership list Lr and
radius ψr for each r ∈ R.

We introduce two search algorithms which use the RBC
in the next section, called the exact and one-shot algorithms.
For the exact search algorithm, the ownership list Lr con-
tains all x ∈ X for which r is the nearest neighbor among
R. For the one-shot algorithm, Lr contains a suitably sized
set of r’s NNs among X .

The focus of this paper is on algorithms that are simple
to parallelize; this is achieved by folding the computational
work into brute force calls. The building routines for the
RBC demonstrate this principle concisely. The building
routine for the exact search algorithm must find the NN
for each x ∈ X among the representatives R. Thus this
routine is simply a call to BF(X,R). Similarly, the building
routine for the one-shot algorithm must find the NNs for
each representative R among the database elements X; thus
this procedure is simply a call to BF(R,X). Both parallelize
easily.

With the data structure and notation in place, we proceed
to describe the search algorithms.

VI. SEARCH ALGORITHMS

In this section, we describe two search algorithms which
use the RBC data structure. The theoretical analysis of
these algorithms appears in the next section. Both of these
algorithms build up from the brute force search primitive.

We first describe the one-shot algorithm, then the exact
search algorithm; both are quite simple. Both algorithms rely
on a randomized data structure, and so are probabilistic. In
the one-shot algorithm, the solution itself is randomized: the
data structure returns a correct result with high probability.
In the exact algorithm, the solution is guaranteed to be cor-
rect; only the running time is probabilistic.3 Hence when an
exact answer is required, the exact algorithm is appropriate;
if a small amount of error can be tolerated, the one-shot
algorithm is simpler and often faster, as we show in the
experiments.

For simplicity, we focus on the problem of 1-NN search,
but mention the minor differences for k-NN where appro-
priate.

A. One-shot search

First, let us review the RBC data structure. The represen-
tatives R are chosen at independently at random, and each
ownership list Lr contains the s closest database elements
to r. Depending on the setting of s, points will typically
belong to more than one representative. We discuss these
parameters further in the theory section.

On a query q, the algorithm proceeds as follows. It first
computes the NN to q among the representatives using a

3This algorithm can be easily modified so that it only guarantees an
approximate nearest neighbor, which reduces search time.



simple linear scan (brute force search), call it r. It then scans
the ownership list Lr, computing the distance from q to
each listed database point. The nearest one is returned as the
nearest neighbor. In the case of k-NN search, the nearest k
are returned from Lr.

We restate the algorithm in terms of the brute force
primitive. The algorithm first calls BF(q,R), which returns
a representative r. It then calls BF(q,X[Lr]) and returns the
answer.

The one-shot algorithm is almost absurdly simple. Yet,
as we show rigorously in the theory section, it provides a
massive speedup; in particular, it reduces the work from
O(n) (required for a full brute force search) to roughly
O(
√
n). Moreover, it is very fast empirically, as we show in

the experiments section.

B. Exact search

Whereas the one-shot algorithm does not use the triangle
inequality (though the analysis requires it), the exact search
algorithm explicitly prunes portions of the space using it; it
is thus reminiscent of classic branch-and-bound techniques.

Like the one-shot algorithm, the exact search algorithm
uses the RBC data structure. However, the ownership list is
slightly different: each representative r owns the database
elements for which it is the nearest representative. The data
structure is constructed algorithmically as follows. The build
algorithm calls BF(X,R), then adds each x ∈ X to the
ownership list of its returned NN in R. The radii ψr are set
to maxx∈Lr

ρ(x, r) as before.
We now detail the search algorithm. First, the closest point

to q among all r ∈ R is computed; call it rq , and let γ =
ρ(q, rq). This distance is an upper bound on the distance
to q’s NN (since rq ∈ X), and so the algorithm can use it
to discard some of the database from consideration. Recall
that the radius of each representative r is stored as ψr—i.e.
each x ∈ Lr satisfies ρ(x, r) ≤ ψr. Because γ is an upper
bound on the distance to the NN, any point belonging to an
r satisfying

ρ(q, r) > γ + ψr (1)

can be discarded. The following sketch illustrates (1); since
there is a point within distance γ of q, no points within
distance ψr of r can be q’s NN.

q

γ ψr

r

Hence the only points that need to be considered belong to
a list Lr, where r violates (1).

The algorithm simultaneously checks a second bound in
hopes of pruning out more of the representatives. As Lemma

1 (see section VII) shows, if rq is q’s NN among the
representatives, any representative that owns q’s NN must
satisfy

ρ(q, r) ≤ 3 · ρ(q, rq). (2)

Hence any representative violating this inequality is pruned
out by the search algorithm.

In the case of k-NN search, inequalities (1) and (2)
are evaluated with respect to the kth-nearest representative
instead of the nearest.

Once the pruning stage is complete, the search algorithm
computes the distance to all points belonging to one of the
remaining representatives, and returns the nearest.

We restate the algorithm in terms of our primitive. It first
computes BF(q,R), much like the one-shot algorithm. In
this case, however, the distances must be retained so that
inequalities (1) and (2) can be checked. Once the inequalities
are checked, some representatives will still remain, with
lists L1, . . . , Lt. Next the search algorithm performs another
brute force search, namely BF(q,X[L1∪L2∪ . . .∪Lt]), and
returns the answer.

We will see that the size of each of the brute force calls
is about O(

√
n), providing major time savings over a full

brute force search.
We emphasize that the computation structure of both

search algorithms is quite different from tree-based search,
in which bounds are incrementally refined, and distance
computations are interleaved with bound evaluations. In both
cases, this structure makes the algorithm extremely simple to
implement and effective to parallelize. It is rather surprising
that such simple algorithms can effectively reduce the work
required for NN search, but that is exactly what we show
both theoretically and empirically in the following sections.

VII. THEORY

In this section, we present rigorous runtime guarantees for
our search algorithms. Though the algorithms are intuitive
and simple, bounding the runtime is non-trivial. Indeed,
many methods for accelerated NN search lack performance
guarantees.

As we described in the background section, all methods
that reduce the work for NN search have some dependence
on the dimensionality of the database. Much of the success
of metric indexing methods is commonly ascribed to their
dependence only on the intrinsic dimensionality of data. In
this section, we prove that the RBC search algorithms scale
with the expansion rate, which is a useful notion of intrinsic
dimensionality.

Definition 1. Let B(x, r) denote the closed ball of radius
r around x—i.e. the set {y : ρ(x, y) ≤ r}—and |B(x, r)|
denote its cardinality. A finite metric space M has expansion
rate c if for all r > 0 and x ∈M

|B(x, 2r)| ≤ c · |B(x, r)|.



The expansion rate is fairly well-establish quantity; see
[27] for mathematical background on it, and [7], [8], [11],
[20] for details specifically related to NN search. We em-
phasize that the ideas in this section build off of ideas in the
aforementioned papers.

To gain some intuition for this measure, consider a grid
of points in Rd under the `1 metric

ρ(x, y) =

d∑
i=1

|xi − yi|.

The expansion rate c in this case is 2d, hence log c corre-
sponds to the dimensionality of the data [6].

Before proceeding, we note two important properties of
the expansion rate. First, the expansion rate is defined only
in terms of the metric, not in terms of the representation of
data; in this sense, the rate captures the intrinsic structure of
the metric space. Second, the expansion rate is defined for
arbitrary metric spaces, so is a meaningful quantity for many
problem settings outside of the standard Euclidean one.

Throughout we assume that X ∪Q has expansion rate c,
and we prove bounds dependent on this expansion rate and
n. We note that work on lower bounds in related settings
suggests that such a dependence on c is necessary [6].

The exact search algorithm and analysis rely on the
following lemma, which is known [11]; we push the proof
to the Appendix to streamline the exposition.

Lemma 1. Let R ⊂ X and assign each x ∈ X to its nearest
r ∈ R. Let γ = minr∈R ρ(q, r) (i.e., γ is the distance to q’s
NN in R). Then, if some r∗ ∈ R owns the nearest neighbor
to q in X , it must satisfy

ρ(q, r∗) ≤ 3γ.

We now analyze the search algorithms. Throughout, we
assume R is a random subset of X , built by picking each
element of X independently at random with probability p =
nr/n. Recall that the ownership list of r ∈ R is denoted Lr

and the radius of this list (i.e. maxx∈Lr
ρ(x, r)) is denoted

ψr. Finally, nr is the expected number of representatives
and n is the cardinality of the database.

A. Exact Search

First, let us consider the exact search algorithm. The
search algorithm performs two steps: in the first step, the
algorithm performs brute force search from the queries to R;
and in the second step, it performs a brute force search from
the queries to the database elements belonging to ownership
lists of un-pruned representatives. The first step clearly has
work complexity O(nr) per query, where nr is the expected
number of representatives; the following analysis bounds the
complexity of the second step. In particular, we show that the
expected number of distance evaluations is c3n/nr. Hence if

nr ≈ c3/2
√
n, the expected number of distance evaluations

in the second step is O(c3/2
√
n), the same as the first step.

We call nr = O(c3/2
√
n) the standard parameter setting.

In the first step of the algorithm, the nearest point to q
in R is found; call this point rq . How many database points
are likely to be closer to q than rq?

Claim 2. Let γ be the distance from q to its nearest neighbor
in R, rq . The expected number of points in B(q, γ) is n/nr,
which is O(

√
n/c3/2) for the standard parameter setting.

Proof: Form a list L = [x1, x2, . . . , xn] by ordering the
database points x ∈ X by their distance to q. Some subset
of X also belongs to R; let xt be the first representative
appearing in L (i.e. the closest representative to q). Then
the expected number of points in B(q, γ) is equal to t− 1.

A slightly different way to view the process is that the L is
fixed, then x1 is chosen as a representative with probability
nr/n, then x2 is chosen as a representative with probability
nr/n, and so on. We wish to know the expected time before
the first xi is chosen as a representative. That is given pre-
cisely by the geometric distribution: the number of Bernoulli
trials needed to get one success. The mean of a Bernoulli
distribution with parameter p = nr/n is 1/p = n/nr. Hence
E|B(q, γ)| = n/nr, which is O(

√
n/c3/2) for the standard

parameter setting.
We note that a high-probability version of the above claim

follows easily from standard concentration bounds. We also
point out that the expectation is over randomness in the
algorithm; we are not making any distributional assumptions
on the database.

After computing the nearest neighbor to the query q
among the representatives, the exact search algorithm uses
γ (≡ ρ(q, rq)) as an upper bound on the distance to q’s
NN to prune out some representative sets. In particular, any
representative r with radius ψr satisfying

ρ(q, r) > γ + ψr (3)

cannot possibly own q’s NN. Additionally, the algorithm can
safely prune any representative r such that

ρ(q, r) > 3γ. (4)

This property follows from Lemma 1. In the following we
only work with inequality (4). The simultaneous use of both
inequalities improved the empirical performance, but it is not
necessary for the following theory.

The second step of the algorithm examines only points
with a representative violating (4). We now show that we
can actually restrict this set further, and subsequently bound
the cardinality of all points considered.

Claim 3. Suppose that x is the nearest neighbor of q, and
that rx is the representative owning x. Then ρ(x, rx) ≤ 4γ.

Proof: From the triangle inequality, ρ(x, rx) ≤
ρ(x, q)+ρ(q, rx). But since x is q’s NN, and since rx ∈ X ,



ρ(x, q) ≤ γ. The other term is bounded by 3γ on account
of (4). Hence the nearest neighbor x must lie within 4γ of
its representative.

We have shown that the search algorithm only needs to
compute distances from q to points x that are within distance
4γ of their representative. Hence, if the lists Lr are stored
in sorted order according to the distance to r, the search
algorithm can simply ignore all points x more than distance
4γ from their representative.4

Theorem 4. The expected number of points examined in the
second stage of the exact search algorithm is c3n/nr, which
is O(c3/2

√
n) for the standard parameter setting.

Proof: By the previous claim, any point x that the
algorithm examines satisfies ρ(x, rx) ≤ 4γ, where rx is
the representative of x. From inequality (4), we also know
that ρ(q, rx) ≤ 3γ. Putting these two facts together with
the triangle inequality, we have that any point x examined
by the algorithm satisfies ρ(q, x) ≤ 7γ. In other words, all
points examined lie in B(q, 7γ), which we now bound the
cardinality of.

Applying the expansion rate condition, we have that

|B(q, 7γ)| ≤ |B(q, 8γ)| ≤ c3|B(q, γ)|. (5)

From Claim 2, E|B(q, γ)| = n/nr, which we can plug into
(5). The resulting bound is E|B(q, 7γ)| ≤ c3n/nr, which is
O(c3/2

√
n) for the standard parameter setting.

As each x only appears on one list Lr, each x is only
compared to q once, implying that (5) bounds not only the
cardinality of the examined set points, but also the number
of computations (in the second step). Since the time for the
first brute force step was also O(c3/2

√
n), we have shown

that the expected runtime of the exact search algorithm is
O(c3/2

√
n).

Finally, we add that Theorem 4 can be extended to the
k-NN case, with a bound of O(c3/2

√
kn). We omit the extra

details because of space restrictions.

B. One-Shot Search

The one-shot search algorithm is considerably simpler
than the exact search algorithm, and also uses a slightly
different data structure configuration. In particular, the al-
gorithm searches only a single representative list per query,
and the ownership lists of the RBC will usually overlap.
Unlike the exact search algorithm, the one-shot algorithm
only returns the NN with high probability.

With these differences in mind, the resulting time com-
plexity bound is actually quite similar to the bound in
Theorem 4. Recall that there are two parameters governing
its run time: nr, the number of representatives; and s, the
number of points assigned to each representative. Hence

4We found that cutting off the search after all points within distance 4γ
were explored had little effect empirically; hence we opted for the simpler
exposition in the algorithms section.

the time complexity of the one-shot search algorithm is
O(nr + s). Thus we need to prove that a certain setting of
these parameters guarantees a high probability of success.

We begin with a simple known lemma and then prove
the main theorem for the general k-NN case. This analysis
requires some different ideas than the analysis for the exact
algorithm and as a result is more technically involved.

Lemma 5. Suppose that ρ(q, r) = γ. Then

B(q, γ) ⊂ B(r, 2γ) ⊂ B(q, 4γ).

Proof: Let x ∈ B(q, γ). Then ρ(x, r) ≤ ρ(x, q) +
ρ(q, r) ≤ 2γ, proving the first inequality. For the second, let
x ∈ B(r, 2γ). Then ρ(x, q) ≤ ρ(x, r) + ρ(r, q) ≤ 2γ + γ ≤
4γ.

Theorem 6. Set the parameters

nr = s = O

(
c
√
kn ·

√
ln

1

δ

)
.

Then the one-shot algorithm returns the k-NNs with proba-
bility at least 1− δ.

Proof: Recall that the one-shot algorithm computes the
nearest representative to the query q, and returns the k-
closest points owned by this representative. Let r1 be the
nearest representative to q, and let γ1 ≡ ρ(q, r1). Similarly,
let rk be the k-closest representative and γk ≡ ρ(q, rk).

First we show that the algorithm succeeds if γk < ψr1/2,
where ψr1 is the radius of the ball associated with represen-
tative r1. Since the representatives are themselves database
points, γk is an upper bound on the distance to q’s kth NN.
Hence the k-NNs are contained in B(q, γk); moreover if r1
owns this entire set, the one-shot algorithm is guaranteed to
return the correct k points. So we show that B(q, γk) ⊂
B(r1, γ1), given the assumption that γk < ψr1/2. Let
x ∈ B(q, γk). Then,

ρ(x, r1) ≤ ρ(x, q) + ρ(q, r1)

≤ γk + γ1

≤ γk + γk

≤ ψr1 ,

as desired. Thus the algorithm fails only if γk > ψr1/2.
We bound the probability that γk > ψr1/2. By Lemma 5

B(r1, ψr1) ⊂ B(r, 2γ1) and B(r1, 2γ1) ⊂ B(q, 4γ1). Then
by the expansion condition,

|B(r1, ψr1)| ≤ |B(q, 4γ1)| ≤ c2|B(q, γ1)|.

Moreover, B(q, γ1) ⊂ B(q, γk), since γk > γ1. Rearrang-
ing, we have that |B(q, γk)| > 1/c2|B(r1, ψr1)|. Of course,
B(r1, ψr1) contains exactly the points owned by r1, so
|B(r1, ψr1)| = s. Thus there are at least s/c2 points closer



to q than rk. What is the probability that at most k were
chosen as representatives?

The probability is given by the CDF of the binomial
distribution B(t, p) with parameter t = s/c2, p = nr/n.
The lower tail of the CDF of B(t, p) can be bounded by

exp

[
− 1

2p

(tp− k)2

t

]
using Chernoff’s inequality. Plugging in the parameters:

exp

[
−1

2

nc2

nrs

(nrs
nc2
− k
)2]

.

Set nr = s =
√
ηkc2n. Then nc2/(nrs) = nc2/(ηkc2n) =

1/(ηk). This simplifies the previous expression to

exp

[
−1

2

1

ηk
(ηk − k)2

]
= exp

[
−1

2

1

ηk
(η − 1)2k2

]
≤ exp

[
−1

2

(η − 1)2

η

]
≤ exp

[
−1

8
η

]
for η > 2.

Setting δ equal to the last line and re-arranging yields the
theorem.

VIII. PARALLEL IMPLEMENTATION

In this section, we detail the implementation of the RBC
on a manycore system. We have previously described the
RBC algorithms abstractly; this section provides a systems-
level view of the methods. It serves to emphasize the natural
parallelism of our methods and provides details behind the
experiments in the following section.

A. Hardware overview

The algorithms of this paper are designed for a manycore
system, by which we simply mean a shared-memory system
with a high core-count. At present, the two dominant forms
of manycore systems are GPUs and CPUs. Though these
two types of processing units are at present quite different,
our methods are simple and general enough to use either
effectively. Importantly, we do not make use of features
present in one but not the other, such as complex branching
abilities, or specialized graphics functionality.

A CPU consists of multiple cores, each of which is
essentially an independent processor.5 Each core has a single
instruction, multiple data (SIMD) unit, also called a vector
unit. The vector unit is capable of executing an instruction
on multiple memory locations simultaneously, and hence is
useful for operations on vectors. The vector unit on most
contemporary CPUs has four to eight single-precision slots.
At the software level, a thread is generally associated with a

5We note that for the purposes of this paper, the cores need not be on
the same chip.
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Figure 1. Computing distances. Each core is assigned a contiguous
segment of queries and database elements to compute distances between
(highlighted rows). During a stage of the distance computation, a portion
of these elements are loaded into the on-chip memory and partial distances
are computed (boxed area within the highlighted rows).

core, not with individual slots of the vector unit. Each core
has a small amount of on-chip memory, called a cache.

A GPU has roughly similar components. It consists of
multiple cores (also called multiprocessors), each of which is
essentially a wide vector unit with a pool of on-chip memory.
This on-chip memory is further subdivided into registers,
shared memory, and a cache. The number of cores and the
width of the vector unit varies across GPU models. The
GPU we experiment with (NVIDIA Tesla c2050) has 14
cores, each of which has 32 single-precision slots. Other
high-end GPUs have roughly similar configurations. Unlike
on the CPU, threads are generally associated with a slot of
the vector unit (at least in the CUDA programming model).

B. Implementing BF

In this section, we describe our implementation of the
brute force primitive, in which virtually all of the work of
our search algorithms takes place.

The most basic implementation design challenge is how
to decompose the problem into enough subcomponents to
keep all of the processing elements busy. Perhaps the most
straightforward way to parallelize BF is a query-level or
database-level parallelism; i.e., each query can be processed
in parallel, or each database element can be processed in
parallel. Our strategy is more subtle and takes into account
the two levels of parallelism in the hardware, namely the
core level and the vector element level. At the core level,
it parallelizes over subsets of the queries and database
elements; at the vector unit level, it parallelizes over the
features of each element.

This implementation approach is a type of block strategy
[28]. This strategy exposes the necessary parallelism to keep
the processing elements busy. It has an additional major
benefit over a simpler decomposition: it minimizes memory
accesses by making intelligent use of the on-chip memory.
Memory accesses can be a major bottleneck on manycore



systems, hence reducing global memory traffic is crucial for
performance.

We proceed to describe the implementation in more detail.
Since the programming models for CPUs and GPUs differ,
we describe the implementation at the hardware level. Let
X be the database elements that must be examined, and Q
a set of queries. Note that whether X is the entire database
or just some subset is unimportant here.

There are |X| · |Q| distances to compute; the naive
approach is to distribute these computations across the cores
uniformly. Instead, each core is assigned a contiguous sub-
block of X and of Q, and must compute all pairwise
distances within these sub-blocks. Suppose that a particular
core is assigned sub-blocks Xi and Qj . Naively, each
x ∈ Xi must be loaded from memory |Qj | times, and
each q ∈ Qj must be loaded |Xi| times. Instead, the
implementation loads all elements of Xi and all elements of
Qj into the on-chip memory, and then performs all necessary
computations through the vector units. In general, Xi and
Qj will be too large to fit into the on-chip memory. Let
k be the largest integer such that k|Xi| + k|Qj | values fit
into the on-chip memory. Then the implementation loads
the first k features of all elements of Xi and Qj into the
on-chip memory, computes partial distances, then loads the
next k features, updates the partial distances, and so on, until
reaching the end of all elements. See Figure 1 for a diagram
of this process.

In the case where |Q| = 1—i.e., a single query is
processed at a time—we are no longer able to re-use loads
from memory, but the parallelism is still designed in the
same way. Thus the procedure is relatively more efficient
when there are many queries to process at once, in much
the same way that matrix-matrix multiplication is generally
more efficient than a series of matrix-vector multiplications.

After the distances between each element of Q and X
are computed, a parallel reduce is used for each q ∈ Q
to determine the minimum [28]. To avoid storing all the
distances, these parallel reduces can be performed in an
interleaved fashion with the distance computations.

IX. EXPERIMENTS

We perform several sets of experiments to demonstrate the
effectiveness of our methods. The first, and probably most
important, set of experiments demonstrate the performance
benefit of the RBC on a 48-core machine, as compared to
a brute force implementation (§IX-B). These experiments
show that the RBC significantly reduces the work required
for NN search and that it parallelizes effectively.

The second set of experiments demonstrates that the RBC
is effective on graphics hardware (§IX-C). It is challenging
to deploy data structures on such hardware, but very im-
portant because of the ubiquity of GPUs in scientific and
database systems.

Name Num pts Dim
Bio 200k 74
Covertype 500k 54
Physics 100k 78
Robot 2M 21
TinyIm 10M 4-32

Table I
OVERVIEW OF DATA SETS.

The final set of experiments compares the performance of
the RBC to the Cover Tree on a desktop machine (§IX-D).
These experiments demonstrate that the exact search al-
gorithm is competitive with the state-of-the-art even on a
machine with a low degree of parallelism.

A. Experimental setup

Our CPU implementation of the RBC was written in C
and parallelized with OpenMP. Our GPU implementation
was written in C and CUDA. Both are available for down-
load from the author’s website.

In very low-dimensional spaces, basic data structures
like kd-trees are extremely effective, hence the challenging
cases are data that is somewhat higher dimensional. We
experiment on several different data sets over a range of
dimensionalities. Table I provides a quick overview; we
describe a few details next.

The Bio, Covertype, and Physics data sets are standard
benchmark data sets used in machine learning and are
available from the UCI repository [29]. They have been used
to benchmark NN search previously [8], [30]. The Robot
data was generated from a Barret WAM robotic arm; see
[31]. The TinyIm data set is taken from the Tiny Images
database, which is used for computer vision research [1]. We
took the image descriptors and reduced the dimensionality
using the method of random projections.6 We experimented
with dimensionalities of 4, 8, 16, 32. For all experiments, we
measured distance with the `2-norm (i.e. standard Euclidean
distance), which is appropriate for this data.

We perform the first set of CPU experiments on a 48-
core/4-chip AMD server machine. Each chip is a 12-core
AMD 6176SE processor, and is divided into two 6-core
segments. This machine has a high core count, so it is a
good system to test the scalability of our algorithms. The
comparison to the Cover Tree is performed on a quad-core
Intel Core i5 machine, which is a reasonable representative
for a mid-range desktop. Our GPU experiments are run on
a NVIDIA Tesla c2050 graphics card, which is designed for
general purpose computation.7 We previously described the
details of our GPU code in a workshop paper [34].

6This dimensionality reduction technique approximately preserves the
lengths of vectors, and hence is a useful preprocessor for NN search; see
e.g. [32]. The technique is formally justified by the Johnson-Lindenstrauss
Lemma [33].

7We note that, in limited experiments, our methods were effective on
(much cheaper) consumer-grade GPUs as well.
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Figure 2. Speedup of exact search over brute force.

B. 48-core experiments

We compare the performance of our methods to brute
force search on the 48-core machine. As far as we know,
there is no readily available accelerated NN method for such
a machine. Furthermore, brute force is already quite fast
because of the raw computational power.

First, we look at the performance of the exact search al-
gorithm, which is guaranteed to return the exact NN. Figure
2 shows the results. We are getting a strong speedup of up to
two orders of magnitude, despite the challenging hardware
setting and the reasonably high data dimensionality.

Next we consider the one-shot search algorithm. As
developed in the theory section, we set nr (the number
of representatives) and s (the number of points owned per
representative) equal to one another. The parameter allows
one to trade-off between the quality of the solution and time
required; we scan over this parameter to show the trade-
off. This algorithm is not guaranteed to return a nearest
neighbor, so we must evaluate the quality of the solution.
A standard error measure is the rank of the returned point:
i.e., the number of database points closer to the query than
the returned point [30]. A rank of 0 denotes the exact NN,
and rank of 1 denotes the second NN, and so on.

Figure 3 shows the results. The speedup achieved in these
experiments is quite significant; even with a rank around
10−1 (very close to exact search), the worst speedup is an
order of magnitude. In applications where a small amount
of error is tolerable, the one-shot search algorithm can
provide a massive speedup, even better than our exact search
algorithm in some cases. In many applications, e.g. in data
mining, there is uncertainty associated with the data, so a
small amount of error in the NN retrieval is not important.

C. GPU experiments

GPUs have impressive brute force search performance,
but the GPU architecture makes efficient data structure
design quite difficult. In particular, GPUs are vector-style

Data Speedup
Bio 38.1
Covertype 94.6
Physics 19.0
Robot 53.2
TinyIm4 188.4

Table II
GPU RESULTS: SPEEDUP OF THE ONE-SHOT ALGORITHM OVER BRUTE

FORCE SEARCH (BOTH ON THE GPU).

processors with limited branching ability; hence conditional
computation can lead to serious under-utilization.

We show that our RBC one-shot algorithm provides a
substantial speedup over the already-fast brute force search
on a GPU. Table II shows the results. We show only the
speedups, as the error rate is the same as that of the CPU
experiments. The parameter was set to achieve an error rate
of roughly 10−1 (refer back to Figure 3). Our method is
clearly very effective in this setting; despite the challenging
hardware design, it provides a one-to-two order of magnitude
speedup on all datasets.

D. Cover Tree comparison

Finally, we compare the performance of the RBC to the
state-of-the-art sequential algorithm for NN, the Cover Tree.
As discussed previously, algorithms for manycore systems
(or parallel systems in general) are burdened with major
additional design constraints as compared to sequential
algorithms. But, if a sequential algorithm is far superior to
a parallel one, then it may not be worth using the parallel
one at all. Here we show that the RBC is algorithmically
competitive with the state-of-the-art: even without leveraging
massive parallelism, its performance is comparable to the
Cover Tree’s and is even superior on the higher-dimensional
data sets.

We compare the exact RBC algorithm to the Cover Tree
on a quad-core desktop, using code from [8]. The Cover
Tree has the advantage that it can use the full architectural
advantages of a modern CPU (in particular branching) and
that the algorithm need not scale to many cores; the RBC
has the advantage that it can use all the cores (though
there are only four). Both algorithms are designed for exact
nearest neighbor search under the same notion of intrinsic
dimensionality.

Table III shows the results.8 The RBC is competitive on
all of the datasets, and significantly outperforms the Cover
Tree on the three largest datasets. Again, these results are
surprising, as our exact search algorithm is much simpler
than the Cover Tree search algorithm, and since our methods
have the additional (significant) constraint that they must
work on highly parallel systems.

8We were unable to get the Cover Tree software to run on the full TinyIm
data sets, so we reduced the database size to 1M.
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Figure 3. Results of the one-shot algorithm. This is a log-log plot of the speedup as a function of the error rate. The x-axis is logarithmic and runs
from 10−3 to 103 and signifies the average (over queries) rank of the returned result. For example, a rank of 100 indicates that on average the algorithm
returns the 2nd NN. The y-axis is also logarithmic and runs from 100 (no speedup) to 104 (10000x speedup).

Data Cover Tree RBC
Bio 18.9 6.4
Covertype 0.4 1.1
Physics 1.9 1.7
Robot 4.6 5.1
Tiny4 0.5 1.2
Tiny8 14.6 3.3
Tiny16 178.9 25.1
Tiny32 387.0 67.9

Table III
COMPARISON OF THE COVER TREE AND THE EXACT RBC ALGORITHM
ON A QUAD-CORE DESKTOP MACHINE. TIMES SHOWN ARE THE TOTAL

QUERY TIME IN SECONDS FOR 10K QUERIES.

We note that the RBC has a significantly lower theoretical
dependence on the dimensionality than the Cover Tree
(O(c3/2) versus O(c12)). This is reflected in the experi-
ments; the two datasets that the Cover Tree significantly out-
performs the RBC on are very low-dimensional: the Tiny4
data set is four-dimensional, and the Covertype dataset has
low intrinsic dimensionality [8]. This reduced dependence
on dimensionality appears to be another advantage of the
RBC and would be interesting to explore further.

X. CONCLUSION

In this paper, we introduced techniques for metric similar-
ity search on parallel systems. In particular, we demonstrated
that the RBC search algorithms significantly reduce the work
required for NN retrieval, while being structured in such a
way that can be easily implemented on parallel systems.
Our experiments show that these techniques are practical on

a range of modern hardware. The theory behind the RBC
shows that the data structure is broadly effective.

Our code is available for download. This code supplies ad-
ditional implementation details for the RBC. Moreover, the
implementations are practical tools for many NN problems.

An interesting direction for future work is to explore
the performance of the RBC in a distributed or multi-GPU
environment. The RBC data structure suggests a simple
distribution of the database according to the representatives
that could be quite effective in such environments. There
are many interesting details for study here, such as I/O
and communication costs, and the connection to distributed
programming paradigms. Furthermore, a distributed imple-
mentation would be a useful toolkit item.
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APPENDIX

We prove Lemma 1.
Proof: Suppose that x is q’s NN in X—i.e. ρ(q, x) ≤

ρ(q, y) for all y ∈ X—and that r∗ owns x (r∗ is x’s NN
among R). Furthermore, let r be q’s NN in R. Since R ⊂ X
and ρ(q, r) = γ, γ gives an upper bound on the distance
to q’s NN; hence ρ(q, x) ≤ γ. Using this bound along
with the triangle inequality gives ρ(x, r) ≤ 2γ, but since
ρ(x, r∗) ≤ ρ(x, r), we have ρ(x, r∗) ≤ 2γ as well. Applying
the triangle inequality to the bounds on ρ(x, r∗) and ρ(q, x)
yields the lemma.


