A Nearest Neighbor Data Structure for Graphics Hardware

Lawrence Cayton Max Planck Institute, Tübingen

Problem setting

Database $X = \{x_1, x_2, ..., x_n\}$

Query q (or many queries Q)

Metric $d(\cdot, \cdot)$

Goal: return x_i minimizing $d(q, x_i)$

($\forall q \in Q$)

Hardware setting

Massive parallelism; limited memory; limited communication

Efficient NN search: classic approach

Decompose space; hopefully will only have to look at a small part

Efficient NN search: classic approach

Decompose space; hopefully will only have to look at a small part

Organize cells into a tree: Explore using branch-andbound approach

Challenges for parallelism

Complex conditional computation seems difficult to distribute

2. Memory issues, practical and theoretical.

3. Needs to run in data-independent way.

What does work in parallel?

Matrix-matrix multiply

huge amount of work to do, mostly independent.

What does work in parallel?

Matrix-matrix multiply

huge amount of work to do, mostly independent.

Brute-force NN search basically a matrix-matrix multiply.

Brute force NN search

dataset	dim	CPU (s)	GPU (s)	Speedup
Bio	74	926.78	9.98	93
Physics	78	486.68	4.99	97

State-of-the-art data struct: 5-20x/30-100x

[Beygelzimer *et al.*, 2006, Ram *et al.*, 2009]

see also [Garcia et al., 2008]

Goal

Build a data structure that provides a speedup over GPU brute force

similar to the speedup given by metric trees over CPU brute force.

Random ball cover

• *r* random representatives

ball around representatives containing *s* points

RBC search algorithm

1. compute nearest representative

RBC search algorithm cont

2. find nearest point within set covered by nearest representative

Algorithm summary

For *m* queries, algorithm is two brute-force searches:

- 1. One for the representatives of size $m \cdot r$.
- 2. Another for the covered points of size $m \cdot s$.

Still fully utilizes parallel architecture, but requires far less work than brute force.

Parameters & Theory

- r = # of reps
- s = # of points assigned to each rep

Pick
$$s = r = O(\sqrt{n \log n})$$

Yields $O(\sqrt{n \log n})$ query time (work) (vs O(n) for brute force)

Major work reduction; still parallelizable.

Parameters & Theory

Yields $O(\sqrt{n} \log n)$ query time (work) (vs O(n) for brute force)

Can prove low probability of error under standard notion of intrinsic dimensionality.

Intuition:

Each point belongs to $\log n$ reps on avg. Overlap boosts probability of success.

Building the RBC

1. Select representatives at random

2. For each representative, generate list of sites owned L_r

Building on the GPU

For each rep, could compute all distances, then sort the list to get the top *s*...

..but the sorting time quickly dominates the computation time as *s* grows; here *s* is quite large $(\sqrt{n} \log n)$

Why?

- Irregular memory accesses (or work-inefficiency)
- GPU sorting is still an ongoing focus of research

Building on the GPU

Want: build algorithm composed of simple, naturally parallel operations.

Idea: If we knew the range γ such that *s* points are within distance γ of the rep, we wouldn't need to sort.

.. so perform a sequence of brute force searches to find γ .

Find closest and farthest points via brute force; gives bounds on correct radius

Perform succession of range counts to find correct radius

With correct radius found, peform range *search* to set binary indicator matrix

Finally

Perform parallel scan on bit arrays to produce mapping

Why bother?

All operations are naturally parallel and highly efficient on GPU:

- Brute force searches (essentially matrix-matrix)
- Parallel scan

Experiments: data

dataset	dim	size	# queries
Bio	74	200k	50k
Robot	21	1M	1M
Phy	78	100k	50k

Experiments: search time

dataset	Brute (s)	RBC (s)	Speedup	Rank
Bio	9.97	0.20	49	0.74
Robot	408.23	3.35	122	0.71
Phy	4.99	0.14	35	1.34

Experiments: total time

dataset	Brute (s)	RBC (s)
Bio	9.97	1.28
Robot	408.23	11.92
Phy	4.99	0.65

Code available for download.