
A Nearest Neighbor Data Structure
for Graphics Hardware

Lawrence Cayton
Max Planck Institute, Tübingen

Problem setting

Database X = {x1, x2, . . . , xn}

Query q (or many queries Q)

Metric d(·, ·)

Goal: return xi minimizing d(q, xi)

(∀q ∈ Q)

Massive parallelism; limited memory; limited communication

Hardware setting

GPU
mem

Efficient NN search: classic approach
Decompose space; hopefully will only

have to look at a small part

Efficient NN search: classic approach
Decompose space; hopefully will only

have to look at a small part

Organize cells
into a tree:

Explore using
branch-and-

bound approach

Challenges for parallelism

1.

2. Memory issues, practical and theoretical.

3. Needs to run in data-independent way.

Complex
conditional

computation
seems difficult

to distribute

Matrix-matrix multiply

What does work in parallel?

huge amount of work to do,
mostly independent.

Matrix-matrix multiply

What does work in parallel?

huge amount of work to do,
mostly independent.

Brute-force NN search
basically a matrix-matrix

multiply.

Brute force NN search

dataset dim CPU (s) GPU (s) Speedup

Bio 74 926.78 9.98 93

Physics 78 486.68 4.99 97

State-of-the-art data struct: 5-20x/30-100x
[Beygelzimer et al., 2006, Ram et al., 2009]

see also [Garcia et al., 2008]

Build a data structure that provides a speedup
over GPU brute force

Goal

similar to the speedup given by metric trees
over CPU brute force.

Random ball cover

ball around representatives containing s points

r random representatives

RBC search algorithm

q

1. compute nearest representative

RBC search algorithm cont

q

2. find nearest point within set covered by
nearest representative

Algorithm summary

For m queries, algorithm is two brute-force searches:

1. One for the representatives of size m · r.

2. Another for the covered points of size m · s.

Still fully utilizes parallel architecture, but
 requires far less work than brute force.

Parameters & Theory

r = # of reps
s = # of points assigned to each rep

(vs O(n) for brute force)

Major work reduction; still parallelizable.

Yields O(
√

n log n) query time (work)

Pick s = r = O(
√

n log n)

Parameters & Theory

Can prove low probability of error under
standard notion of intrinsic dimensionality.

(vs O(n) for brute force)
Yields O(

√
n log n) query time (work)

Intuition:

Overlap boosts probability of success.
Each point belongs to log n reps on avg.

2. For each representative, generate list of sites
owned

1. Select representatives at random

Building the RBC

Lr

Building on the GPU

Why?
• Irregular memory accesses (or work-inefficiency)
• GPU sorting is still an ongoing focus of research

For each rep, could compute all distances, then
sort the list to get the top s...

..but the sorting time quickly dominates the
computation time as s grows; here s is quite large
(
√

n log n)

Building on the GPU

Want: build algorithm composed of simple,
naturally parallel operations.

Idea: If we knew the range γ such that s points are
within distance γ of the rep, we wouldn’t need to
sort.

.. so perform a sequence of brute force searches to
find γ.

Find closest and farthest points
via brute force; gives bounds
on correct radius

Perform succession of range
counts to find correct
radius

With correct radius found,
peform range search to set
binary indicator matrix

0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0....

Perform parallel scan on bit arrays to produce mapping

Finally

0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0....

4 7 8 15

All operations are naturally parallel and highly
efficient on GPU:

Why bother?

• Brute force searches (essentially matrix-matrix)
• Parallel scan

Experiments: data

dataset dim size # queries

Bio 74 200k 50k

Robot 21 1M 1M

Phy 78 100k 50k

Experiments: search time

dataset Brute (s) RBC (s) Speedup Rank

Bio 9.97 0.20 49 0.74

Robot 408.23 3.35 122 0.71

Phy 4.99 0.14 35 1.34

Experiments: total time

dataset Brute (s) RBC (s)

Bio 9.97 1.28

Robot 408.23 11.92

Phy 4.99 0.65

Code available for download.

