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Abstract

We consider the non-metric multidimensional
scaling problem: given a set of dissimilarities
A, find an embedding whose inter-point Eu-
clidean distances have the same ordering as
A. In this paper, we look at a generaliza-
tion of this problem in which only a set of
order relations of the form d;; < dj; are pro-
vided. Unlike the original problem, these or-
der relations can be contradictory and need
not be specified for all pairs of dissimilarities.
We argue that this setting is more natural
in some experimental settings and propose
an algorithm based on convex optimization
techniques to solve this problem. We apply
this algorithm to human subject data from
a psychophysics experiment concerning how
reflectance properties are perceived. We also
look at the standard NMDS problem, where
a dissimilarity matrix A is provided as input,
and show that we can always find an order-
respecting embedding of A.

1 Introduction

Multidimensional scaling (MDS) refers to the general
task of assigning Euclidean coordinates to a set of ob-
jects such that given a set of dissimilarity, similarity,
or ordinal relations between the objects, the relations
are obeyed as closely as possible by the embedded
points. This assignment of coordinates is also known
as a Euclidean embedding. Multidimensional scaling
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algorithms fall into two broad classes: metric algo-
rithms, which seek an embedding with inter-point dis-
tances closely matching the input dissimilarities; and
non-metric algorithms, which find an embedding re-
specting only the relative ordering of the input dissim-
ilarities. We focus on the non-metric MDS problem in
this paper.

Non-metric MDS has been used extensively in the psy-
chometrics and psychophysics communities to embed
similarity and dissimilarity ratings derived from a va-
riety of sources. Metric MDS is not appropriate in
many of these applications since the magnitude of the
input dissimilarities is unreliable, too difficult to mea-
sure, or simply unavailable. As a concrete example,
suppose we wish to asses the perceptual similarity of
some visual stimuli. We could ask human subjects to
rate the similarity of these objects on a scale from one
to a hundred, then embed these similarity ratings to vi-
sualize them. Unfortunately, different users will likely
use different internal scales to asses similarity. More-
over, because of drift effects, a subject will sometimes
rate a single stimulus differently depending on the or-
der in which the stimuli where presented. Thus, the
actual numbers that the users give are typically not
reliable; however, the relative ordering of them will be
fairly consistent [6]. Because of the inconsistency of
user ratings, non-metric MDS is more appropriate in
this setting than metric MDS.

Let us formalize the standard non-metric MDS prob-
lem.

Problem 1 (Shepard-Kruskal Scaling). Given a sym-
metric zero diagonal matriz A = [§;;], find X = [x;] €
R¥*™ such that

Vi, g,k ||Xz — XjH% < ||Xk - Xl”% <~ (51'3' < Ol

(1)



This problem was first considered by Shepard [12, 13],
but it was Kruskal who posed the problem as an opti-
mization problem and introduced an alternating mini-
mization procedure for solving it [8, 7, 2, 1]. We review
the Shepard-Kruskal algorithm in the next section.

A curiosity of the the Shepard-Kruskal formulation
of non-metric MDS is that it actually requires mag-
nitudes as input, even though NMDS concerns only
ordinal information. Indeed, one of the motivations
for NMDS is to avoid the difficulties associated with
collecting accurate magnitude information. Another
quirk of the Shepard-Kruskal formulation is that it re-
quires all order comparisons—one cannot be agnostic
about the ordering of any pair of dissimilarities. Col-
lecting all order comparisons may be difficult or im-
possible in some experiments; for example, we report
a study on the perception of material reflectance in
which only a small number of comparisons are avail-
able. These two issues lead us to a more general for-
mulation of the NMDS problem.

Problem 2 (Paired Comparisons). Given a set S of
quadruples, find X € R™ such that

(i, k1) €S = |xi — x5 < llxr —xl3  (2)

This problem subsumes Problem 1 since we can take
the order information in a dissimilarity matrix and
convert it to paired comparisons.

We begin by reviewing the Shepard-Kruskal problem
and algorithm in Section 2. Next, we derive a convex
program for Problem 2 in Section 3. In Section 4 we
apply the novel algorithm to subject data on surface
reflectance and use it to construct a perceptual space
for a reflectance. We conclude with a discussion on
directions for future research.

2 The Shepard-Kruskal Problem and
Algorithm

In this section, we consider the Shepard-Kruskal for-
mulation of NMDS. We first review the the classical
Shepard-Kruskal scaling (SKS) algorithm, which has
been applied extensively.

The SKS algorithm is based on minimizing the stress-1
functional

(1% = x]l2 — 0(55))
o1(X) = min Z” (IIxi = |2 (0i5)) 7
0 Zi]’ [ — x|
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where () is an arbitrary monotonic function. The
cost function is minimized with respect to the embed-
ding X. Shepard’s routine for minimizing oy involves

iterating two alternating steps: fixing 6 and minimiz-
ing over X, then fitting 6 to the current embedding X.
X is fit to a particular transformation of the dissimi-
larities using gradient descent. Unfortunately, o1 (X)
is not convex in X, so this minimization step can eas-
ily get caught in local minima— especially considering
that the minimization is over a large number of pa-
rameters (the number of points times their dimension-
ality). Moreover, the proper dimensionality of X must
be guessed a priori and can have a substantial effect
on the resulting embedding.

In the second step, 6 is aligned with the current X
with isotonic regression. Note that since o is a min-
imum over all monotonic transformations of J, only
the ordering of the dissimilarities effects the value of
the cost function; any magnitude information is swept
away by the monotonic transformation.

The construction of the SKS problem naturally leads
one to an interesting theoretical question: which dis-
similarity matrices can be embedded perfectly—i.e.,
with no order violations? The following lemma shows
that, perhaps surprisingly, any dissimilarity can be
perfectly embedded and give an explicit construction
to do so. This lemma reveals that the Shepard-
Kruskal representation—the dissimilarity matrix—is
significantly weaker than the paired comparisons rep-
resentation since it is easy to construct an input in
paired comparisons form that cannot be embedded
into Euclidean space perfectly (or even embedded into
a metric space). Put differently, there are many in-
stances of the paired comparisons problem that cannot
be handled by an algorithm for SKS.

Lemma 1. Given a symmetric matric A with zero
diagonal, there exists a matrix X such that

(4)

Proof. Let V. = T — %11" be the centering matrix.
Then define K = —2VAV. By construction, K is a
symmetric matrix and the following relation between

the entries of A and K holds
6ij = ]ﬂ“ — 2](52] + kjj. (5)

This equality is demonstrated in the standard deriva-
tion of classical MDS [1]. Let Apin(K) denote the al-
gebraically smallest eigenvalue of K. It is easy to show
that K/ = K — min(Apin(K),0)I is positive semidefi-



nite. Further, decomposing K’ = X " X, we have
lIx; — %[5 =ki; — 2k;; + K
=k — min(/\min(K), O) - Qkij + k‘jj
— min(Apin(K), 0)

1

Thus, X is a Euclidean embedding of A such that
all pairwise distances are a constant shift of the input
dissimilarities, and thus all relative comparisons are
preserved. O

The lemma gives a very fast, simple algorithm for
NMDS. In fact, this algorithm has been suggested for
metric MDS [2]. However, that this construction can
be used to find perfect non-metric embeddings does
not appear to be known. The algorithm is equiva-
lent to adding a constant (—min(Ampin,0)) to all of
the dissimilarities—in other words, we can convert any
dissimilarity matrix into a squared Euclidean distance
matrix by simply increasing all dissimilarities by a
constant. In practice, this method tends to push all
dissimilarities to nearly the same value and results in
high-dimensional solutions. Though this lemma is an
interesting theoretical point, the construction used is
not particularly practical.

3 Paired Comparisons

In this section we present a novel algorithm for learn-
ing a low rank embedding from a collection of paired
comparisons. Our method is related to the recent work
on distance metric learning [11, 15, 18, 20].

Let S be a set of 4-tuples (4,7, k,1). We hope to find
an embedding X such that

i = x;013 < llxi = xill3 ¥ (65.k 1) €S (7)

The set S can have repetitions and inconsistencies. We
now derive a semidefinite program for finding such an
embedding X. Our program will find a Gram matrix
K = XTX, which we will then decompose to recover
X.

We can rewrite the distances in terms of the Gram
matrix:

Ix; — %13 = ki — 2kij + kjj. (8)

Then, we can express the paired comparisons in S as
linear inequalities on the Gram matrix:

kii — 2kij =+ kjj < kpr — 2k +ky V (i,j, k, l) eS.

Our aim is to find a positive semidefinite matrix K >
0, which satisfies these inequality constraints.

The set of inequality constraints above are not suffi-
cient to determine K uniquely. For example, if X sat-
isfies the set of paired comparisons, so will any scaling,
translation or rotation of X. The scale must be fixed
to avoid the trivial embedding and we fix the trans-
lation ambiguity to avoid numerical instability issues.
The translation ambiguity is eliminated by demanding
that the embedding be centered at the origin, i.e.,

> x, =0, (9)
b

The above equation can be recast as a scalar equation

(3) ()0 oo

which is necessary and sufficient and can be shown to
be equivalent to

> kap = 0. (11)
ab

This is a linear equation of the entries of the matrix
K.

Handling the scale ambiguity is a bit more compli-
cated. To prevent the embedding from collapsing into
the origin, we constrain the scale of the embedding
from below. We will demand that for a relative com-
parison to be valid the two distances should be differ-
ent by at least 1 unit distance, giving the constraint

kri — 2kp + by > ki — 2ki; + kj; + 1. (12)

Note that the choice of the constant 1 was essentially
arbitrary; any positive constant will work. Collecting
the constraints that we have imposed on our Gram
matrix thus far, we get the following semidefinite fea-
sibility problem

ke — 2k + ku > kis — 2kij + k5 +1 Vi, 5,k 1) €S
> ke =0, K=0. (13)
ab

We can find a solution to this feasibility program only
if there is an embedding satisfying all of the con-
straints. In general, it may not be possible to satisfy all
of the constraints. We thus introduce a slack variable
&ijr1 for each inequality constraint to allow for inequal-
ity violations. Our objective is to minimize the total
amount of slack, leading to the following semidefinite
program:

min E &ijkl
K. ik J

(i,5,k,1)€S

subject to

Zkab =0, &jju=>0, K=0. (14
ab

Kk — 2Kk + by — ki + 2kij — kj; > 1= &iji



Once we find the optimal K for this program, we can
recover the coordinates of X by spectrally decompos-
ing K into UAU " and setting X = UAY/2.

In many instances a user may desire a low-dimensional
embedding. Towards this goal, we add a regularizer
to the above optimization problem that trades off the
embedding complexity with the fitting error (the total
slack):

min Z &ijrl + Arank(K)
K. ijr .
(i,,k,1)€S

subject to  kgr — 2ki; + ky — kii + Qkij — kjjj > 1= &k

> kay =0, Kx0. (15)
ab

This A is a positive scalar that controls the tradeoff be-
tween the violations and the rank of the matrix, i.e.,
the complexity of our model. Unfortunately, the rank
of a matrix is a non-convex function and minimizing
the rank of a symmetric positive semidefinite matrix
subject to linear inequality constraints is NP-Hard [4].
We thus relax the rank function to its convex enve-
lope, the trace. This relaxation is standard in the con-
vex programming literature. Using this relaxation has
the additional benefit of constraining the scale of the
embedding from above. We are left finally with the
following semidefinite program.

min Z &ijkl + A Trace(K)
K.&ijk L
(4,5,k,1)€S

subject to  kgr — 2kk; + ky — ki + Qkij — k‘jj >1- fijkl

> kay =0, KxO0. (GNMDS)
ab

This program can be solved using a general purpose
semidefinite programming package. We obtained the
best results using Sedumi [14]. Unfortunately, general
purpose semidefinite programming solvers scale poorly
with the problem size. To handle larger problem sizes,
we implemented a first order alternating projections
algorithm [3, 5]. Though this method converges much
more slowly than interior-point based methods for
moderately sized problems, it scales to large problem
sizes and has minimal memory requirements.

4 Experiments

4.1 A Toy Experiment

As a simple illustration of our algorithm, we consider
the 10 cities dataset which consists of the pairwise dis-
tance between 10 cities in the United States [1]. Fig-
ure 1 plots the result of running classical MDS on this
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Figure 1: Comparing Classical multidimensional scal-
ing and Generalized non-metric multidimensional scal-
ing. We plot the result of running classical MDS on the
10 cities dataset in red and the result of running the
GNMDS algorithm on the set of all pair comparisons
generated from the same dataset in blue.

dataset in red. The 10x 10 distance matrix was used to
generate a set of 44 paired comparisons by first sorting
the entries of the distance matrix and comparing ad-
jacent entries in the sorted list. The result of running
the GNMDS algorithm on this dataset is plotted in
blue. The two embeddings were aligned up to a trans-
lation and global scale before plotting. Information
is lost when converting the distances to only paired
comparisons, so one cannot hope to match the clas-
sical MDS solution exactly. However, the embedding
our algorithm returns is a reasonable approximation
to the classical MDS solution.

4.2 A Perceptual Space for Reflectance

Our primary motivation for the development of the
generalized non-metric multidimensional scaling (GN-
MDS) algorithm was the analysis of how humans per-
ceive the reflection of light from a surface. The Bi-
directional Reflectance Distribution Function (BRDF)
is a mathematical description of how a surface reflects
light. For every incident direction it describes the an-
gular distribution of reflected light [10]. The shape of
these distributions determine whether a material ap-
pears rough and matte or shiny and metallic.

To understand how humans perceive the reflection of
light from different kinds of surfaces we wish to con-
struct a space/embedding for these BRDFs in which
the pairwise Euclidean distances between BRDF's are
indicative of the perceptual distance between them.

To this end, we conducted the following psycho-physics
experiment. Fach participant in the experiment was



Figure 2: (a) Screen capture from the distance comparison test. (b) Six of the 55 images used in our psychophysics

study.

shown a series of triplets of rendered images. Each im-
age consisted of the Stanford Bunny [16] rendered un-
der constant illumination and viewing direction. The
only difference was the material/ BRDF used to de-
scribe how the surface of the bunny reflects light.
For each triplet the subjects were asked to indicate
whether the center image was more similar to the im-
age on the left or to the image on the right (Figure 2(a)
shows a screen-shot from one such test). The use of
triplets in this manner is a special case of Problem 2,
where j = I.

A total of 55 BRDFs from the MIT/MERL BRDF
database [9] were used. In this study we restrict our
attention to the achromatic aspects of the BRDF, also
known as gloss (examples of some of these BRDF's ap-
pear in Figure 2(b)). While monochromatic, they have
widely varying gloss properties. The BRDFs used in-
clude metals, paints, fabrics, minerals, synthetics, and
organic materials. Because there are over 78,000 pos-
sible triplets, only a randomly sampled subset of com-
parisons could be performed. In our study 75 subjects
performed 200 comparisons each for a total of 15,000
comparisons (there were a small number of repeated
comparisons). The triplets were chosen at random for
each subject!.

The data collected in the above experiment cannot
be directly analyzed using Shepard-Kruskal Scaling.
The set of observations do not define a total order
on the set of distances/similarities. Furthermore, the
dataset contains contradictions and repetitions which
the Shepard-Kruskal formulation is unable to handle.
In the following we describe the result of analyzing this
data using the GNMDS algorithm.

4.2.1 Perceptual Properties of the
Embedding

We begin by considering the embedding produced by
running the GNMDS algorithm on the data from the
psychophysics experiment described in the previous

!For additional details about the experiment we refer
the reader to [19].

section.

Figure 3(a) shows the 2-D embedding with cropped
windows of the BRDF images displayed in the loca-
tions of the BRDF in the new space. Notice the clus-
tering of the BRDF's into two distinct clumps and the
similarity amongst the images corresponding to them
in each clump. Additionally, there are pronounced
trends along the horizontal and vertical axes. The
vertical axis is closely correlated with brightness; as
one moves from top to bottom, the BRDFs become
increasingly brighter . The horizontal component of
the embedding reveals whether the BRDFs are diffuse
or glossy: the leftmost cluster contains BRDFs with
a strong specular (glossy) component, and the right
contains the primarily diffuse BRDF's.

The American Society for Testing and Materials de-
fines six dimensions for the perception of gloss. Figures
3(b)-(d) show plots of three of the ASTM gloss dimen-
sions in our embedding space. The position of each
circle corresponds to one of the BRDF's in the embed-
ding space and the diameter corresponds to the mea-
surement of the BRDF in the ASTM gloss dimension.
Figure 3(b) shows the measurements of each BRDF
for contrast gloss (a measure of diffuseness), Figure
3(c) shows the measurements for specular gloss at 20°
(a measure of specularity), and Figure 3(d) shows the
measurements for haze (a more robust measure of spec-
ularity less prone to measurement error).

Notice the strong correlation between the spatial lay-
out of the embedding and the radii of the circles.

4.2.2 Quantitative Analysis

In the last section we considered the qualitative as-
pects of the embedding. In this section we present a
quantitative analysis. Given a set of subject responses
to paired comparisons on the same 55 BRDF's, we mea-
sure the error of an embedding as the average number
of paired comparisons that are violated if we use the
pairwise distance between BRDFs in the embedded
space as our estimate of the distance between them.
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Figure 3: Perceptual Embedding. (a) The 2-D embedding with cropped windows of the BRDF images displayed
in the locations of the BRDF in the new space. (b-d): Contrast Gloss (b), Specular Gloss (c) and Haze (d) values
shown for BRDF's in the embedding. The diameter of the circles corresponds to the value for each property.
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Figure 4: Cross Validation and Rank. (a) Training (red) and Testing (green) error curves for varying choices of
the regularization parameter A for our MDS algorithm. Testing error (blue) for the randomized control set. (b)
Average rank as a function of the regularization parameter.

We ran our MDS algorithm on the data for varying
values of A between 0 and 300, and performed 10-fold
cross-validation for each value of A. Figure 4(a) plots
the training (Red) and testing error (Green) as a func-
tion of the parameter \. Figure 4(b) plots the average
rank of the embedding as a function of A\. As expected,
the rank of the embedding goes down as A is increased
and the gap between the training and testing errors is
reduced.

The embedding with the lowest measured cross-
validation error has a training error of 21.9% and a test
error of 21.3%. The embedding has over 95% of the
variance contained in the first two dimensions. Trun-
cating the embedding at two dimensions increased the
test error insignificantly by 0.5%. This embedding is a
significant improvement in terms of test error as well as
the complexity of the embedding obtained with A = 0.

We found that two different subjects, on average, dis-
agree on about 17% of the orderings. Since the data
is derived from these subjects, 17% is a natural lower
bound on the amount of error achievable. On the other
hand, random guessing leads to an error of about 50%.
Thus the embedding that GNMDS finds is very nearly
the best possible in terms of error.

As another comparison, suppose we calculate the Eu-
clidean distance between the BRDF vectors describing
each material. How well do these distances match up
with the user orderings? Perhaps surprisingly, these
distances have 37.5% error—i.e. they do not match up
with user orderings very closely at all. In other words,
the BRDF measurements correspond only weakly to
perceptual properties. The 21.3% error obtained us-
ing our embedding is significantly better than using
the Ly norm between BRDFSs; and, is only a few per-
cent worse than the best possible performance on this
dataset.

4.2.3 Stability

Despite the large number of subject responses, the em-
bedding consists of only 55 points corresponding to the
55 BRDFS. One potential concern is over-fitting the
embedding to the 55 BRDFs used; perhaps a small
change in the set of BRDFs could affect the embed-
ding substantially.

To check for this possibility, we measured the stability
of the embedding with respect to deletions. We con-
structed 55 different embeddings, each with a differ-
ent single BRDF omitted and compared each of these
54-point embeddings to the original 55-point embed-
ding. For each embedding, we aligned the 54 points
up with the corresponding points in the 55 point em-
bedding via a similarity transformation. We then cal-
culated the average squared distortion [17]. Note that
paired comparisons are invariant to similarity trans-
formations. To establish a scale for these errors, the
average distance between pairs of points in the global
embedding was calculated. The root mean squared
distortion was 0.027 while the average distance be-
tween points in the global embedding was 0.87. This
is an error of only 3%, indicating a high degree of sta-
bility across embeddings.

5 Discussion

We considered a generalized formulation of non-metric
multidimensional scaling which subsumes the Kruskal-
Shepard formulation. We presented an algorithm
based on convex optimization techniques for finding
solutions to the generalized problem. Finally, we used
this algorithm to analyze human subject data from
a psychophysics experiment designed to measure the
human perception of material reflection.

There are a couple of directions for future research.
The first is the problem of out-of-sample extensions.



Is it possible to add an object to an embedding using
some paired comparisons without re-running the entire
semidefinite program? A different avenue of research
concerns the issue of sampling pairwise comparisons.
Is there an active sampling strategy that can be used
to find a good embedding? Such an approach will be
critical to the practicality of applying GNMDS in large
psychophysical studies. Finally, we are interested in
the development of an efficient, special-purpose large-
scale solver for the semidefinite program that exploits
knowledge of the problem structure.
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