
A Learning Framework for Nearest Neighbor Search

Lawrence Cayton
Department of Computer Science

University of California, San Diego
lcayton@cs.ucsd.edu

Sanjoy Dasgupta
Department of Computer Science

University of California, San Diego
dasgupta@cs.ucsd.edu

Abstract

Can we leverage learning techniques to build a fast nearest-neighbor (NN) re-
trieval data structure? We present a general learning framework for the NN prob-
lem in which sample queries are used to learn the parameters of a data structure
that minimize the retrieval time and/or the miss rate. We explore the potential of
this novel framework through two popular NN data structures: KD-trees and the
rectilinear structures employed by locality sensitive hashing. We derive a gener-
alization theory for these data structure classes and present simple learning algo-
rithms for both. Experimental results reveal that learning often improves on the
already strong performance of these data structures.

1 Introduction

Nearest neighbor (NN) searching is a fundamental operation in machine learning, databases, signal
processing, and a variety of other disciplines. We have a database of points X = {x1, . . . , xn}, and
on an input query q, we hope to return the nearest (or approximately nearest, or k-nearest) point(s)
to q in X using some similarity measure.

A tremendous amount of research has been devoted to designing data structures for fast NN retrieval.
Most of these structures are based on some clever partitioning of the space and a few have bounds
(typically worst-case) on the number of distance calculations necessary to query it.

In this work, we propose a novel approach to building an efficient NN data structure based on
learning. In contrast to the various data structures built using geometric intuitions, this learning
framework allows one to construct a data structure by directly minimizing the cost of querying it.

In our framework, a sample query set guides the construction of the data structure containing the
database. In the absence of a sample query set, the database itself may be used as a reasonable prior.
The problem of building a NN data structure can then be cast as a learning problem:

Learn a data structure that yields efficient retrieval times on the sample queries
and is simple enough to generalize well.

A major benefit of this framework is that one can seamlessly handle situations where the query
distribution is substantially different from the distribution of the database.

We consider two different function classes that have performed well in NN searching: KD-trees
and the cell structures employed by locality sensitive hashing. The known algorithms for these
data structures do not, of course, use learning to choose the parameters. Nevertheless, we can
examine the generalization properties of a data structure learned from one of these classes. We
derive generalization bounds for both of these classes in this paper.

Can the framework be practically applied? We present very simple learning algorithms for both of
these data structure classes that exhibit improved performance over their standard counterparts.

1

We survey work on NN search structures in the next section, develop our learning framework for-
mally in section 3, and describe our learning algorithms in section 4. Section 5 details a generaliza-
tion theory, and section 6 presents experimental results.

2 Related work

There is a voluminous literature on data structures for nearest neighbor search, spanning several
academic communities. Work on efficient NN data structures can be classified according to two
criteria: whether they return exact or approximate answers to queries; and whether they merely
assume the distance function is a metric or make a stronger assumption (usually that the data are
Euclidean). The framework we describe in this paper applies to all these methods, though we focus
in particular on data structures for RD.

Perhaps the most popular data structure for nearest neighbor search in RD is the simple and con-
venient KD-tree [1], which has enjoyed success in a vast range of applications. Its main downside
is that its performance is widely believed to degrade rapidly with increasing dimension. Variants
of the data structure have been developed to ameliorate this and other problems [2], though high-
dimensional databases continue to be challenging. One recent promising line of work suggests
randomly projecting the database down to a low-dimensional space, and then using KD-trees [3, 4].

Locality sensitive hashing (LSH) has emerged as a promising option for high-dimensional NN search
in RD [5]. Unlike KD-trees, it has strong theoretical guarantees for databases of arbitrary dimen-
sionality, though they are for approximate NN search. We review both KD-trees and LSH in detail
later.

For data in metric spaces, there are several schemes based on repeatedly applying the triangle in-
equality to eliminate portions of the space from consideration; these include Orchard’s algorithm
[6] and AESA [7]. Metric trees [8] and the recently suggested spill trees [3] are based on similar
ideas and are related to KD-trees. A recent trend is to look for data structures that are attuned to the
intrinsic dimension, e.g. [9]. See the excellent survey [10] for more information.

3 Learning framework

In this section we formalize a learning framework for NN search. This framework is quite general
and will hopefully be of use to algorithmic developments in NN searching beyond those presented
in this paper.

Let X = {x1, . . . , xn} denote the database and Q the space from which queries are drawn. A
typical example is X ⊂ RD and Q = RD. We take a nearest neighbor data structure to be a
mapping f : Q → 2X ; the interpretation is we compute distances only to f(q), not all of X . For
example, the structure underlying LSH partitions RD into cells and a query is assigned to the subset
of X that falls into the same cell.

What quantities are we interested in optimizing? We want to only compute distances to a small
fraction of the database on a query; and, in the case of probabilistic algorithms, we want a high
probability of success. More precisely, we hope to minimize the following two quantities for a data
structure f :

• The fraction of X that we need to compute distances to:

sizef (q) ≡ |f(q)|
n

.

• The fraction of a query’s k nearest neighbors that are missed:

missf (q) ≡ |Γk(q) \ f(q)|
k

(Γk(q) denotes the k nearest neighbors of q in X).

In ε-approximate NN search, we only require a point x such that d(q, x) ≤ (1 + ε)d(q,X), so we
instead use an approximate miss rate:

εmissf (q) ≡ 1 [@x ∈ f(q) such that d(q, x) ≤ (1 + ε)d(q,X)] .

2

None of the previously discussed data structures are built by explicitly minimizing these quantities,
though there are known bounds for some. Why not? One reason is that research has typically
focused on worst-case sizef and missf rates, which require minimizing these functions over all
q ∈ Q. Q is typically infinite of course.

In this work, we instead focus on average-case sizef and missf rates—i.e. we assume q is a draw
from some unknown distribution D on Q and hope to minimize

Eq∼D [sizef (q)] and Eq∼D [missf (q)] .

To do so, we assume that we are given a sample query set Q = {q1, . . . , qm} drawn iid from D. We
attempt to build f minimizing the empirical size and miss rates, then resort to generalization bounds
to relate these rates to the true ones.

4 Learning algorithms

We propose two learning algorithms in this section. The first is based on a splitting rule for KD-trees
designed to minimize a greedy surrogate for the empirical sizef function. The second is a algorithm
that determines the boundary locations of the cell structure used in LSH that minimize a tradeoff of
the empirical sizef and εmissf functions.

4.1 KD-trees

KD-trees are a popular cell partitioning scheme for RD based on the binary search paradigm. The
data structure is built by picking a dimension, splitting the database along the median value in that
dimension, and then recursing on both halves.

procedure BUILDTREE(S)
if |S| < MinSize, return leaf.
else: Pick an axis i.

Let median = median(si : s ∈ S).
LeftTree = BUILDTREE({s ∈ S : si ≤ median}).
RightTree= BUILDTREE({s ∈ S : si > median}).
return [LeftTree, RightTree, median, i].

To find a NN for a query q, one first computes distances to all points in the same cell, then traverses
up the tree. At each parent node, the minimum distance between q and points already explored is
compared to the distance to the split. If the latter is smaller, then the other child must be explored.

Explore right subtree: Do not explore:

Typically the cells contain only a few points; a query is expensive because it lies close to many of
the cell boundaries and much of the tree must be explored.

Learning method

Rather than picking the median split at each level, we use the training queries qi to pick a split that
greedily minimizes the expected cost. A split s divides the sample queries (that are in the cell being
split) into three sets: Qtc, those q that are “too close” to s—i.e. nearer to s than d(q,X); Qr, those
on the right of s but not in Qtc; and Ql, those on the left of s but not in Qtc. Queries in Qtc will
require exploring both sides of the split. The split also divides the database points (that are in the
cell being split) into Xl and Xr. The cost of split s is then defined to be

cost(s) ≡ |Ql| · |Xl|+ |Qr| · |Xr|+ |Qtc| · |X|.
cost(s) is a greedy surrogate for

∑
i sizef (qi); evaluating the true average size would require a

potentially costly recursion. In contrast, minimizing cost(s) can be done painlessly since it takes on
at most 2m + n possible values and each can be evaluated quickly. Using a sample set led us to a
very simple, natural cost function that can be used to pick splits in a principled manner.

3

4.2 Locality sensitive hashing

LSH was a tremendous breakthrough in NN search as it led to data structures with provably sublinear
(in the database size) retrieval time for approximate NN searching. More impressive still, the bounds
on retrieval are independent of the dimensionality of the database. We focus on the LSH scheme for
the ‖ · ‖p norm (p ∈ (0, 2]), which we refer to as LSHp. It is built on an extremely simple space
partitioning scheme which we refer to as a rectilinear cell structure (RCS).

procedure BUILDRCS(X ⊂ RD)
Let R ∈ RO(logn)×d with Rij iid draws from a p-stable distribution.1

Project database down to O(log n) dimensions: xi 7→ Rxi.
Uniformly grid the space with B bins per direction.

See figure 4, left panel, for an example. On query q, one simply finds the cell that q belongs to, and
returns the nearest x in that cell.

In general, LSHp requires many RCSs, used in parallel, to achieve a constant probability of success;
in many situations one may suffice [11]. Note that LSHp only works for distances at a single scale
R: the specific guarantee is that LSHp will return a point x ∈ X within distance (1 + ε)R of q as
long as d(q,X) < R. To solve the standard ε approximate NN problem, one must buildO(log(n/ε))
LSHp structures.

Learning method

We apply our learning framework directly to the class of RCSs since they are the core structural
component of LSHp. We consider a slightly wider class of RCSs where the bin widths are allowed
to vary. Doing so potentially allows a single RCS to work at multiple scales if the bin positions are
chosen appropriately. We give a simple procedure that selects the bin boundary locations.

We wish to select boundary locations minimizing the cost
∑
i εmissf (qi) +λsizef (qi), where λ is a

tradeoff parameter (alternatively, one could fix a miss rate that is reasonable, say 5%, and minimize
the size). The optimization is performed along one dimension at a time. Fortunately, the optimal
binning along a dimension can be found by dynamic programming. There are at mostm+n possible
boundary locations; order them from left to right. The cost of placing the boundaries at p1, p2, pB+1

can be decomposed as c[p1, p2] + · · ·+ c[pB , pB+1], where

c[pi, pi+1] =
∑

q∈[pi,pi+1]

εmissf (q) + λ
∑

q∈[pi,pi+1]

|{x ∈ [pi, pi+1]}| .

Let D be our dynamic programming table where D[p, i] is defined as the cost of putting the ith
boundary at position p and the remaining B + 1− i to the right. Then D[p, i] = minp′≥p c[p, p′] +
D[p′, i− 1].

5 Generalization theory

In our framework, a nearest neighbor data structure is learned by specifically designing it to per-
form well on a set of sample queries. Under what conditions will this search structure have good
performance on future queries?

Recall the setting: there is a database X = {x1, . . . , xn}, sample queries Q = {q1, . . . , qm} drawn
iid from some distribution D onQ, and we wish to learn a data structure f : Q → 2X drawn from a
function class F . We are interested in the generalization of sizef (q) ≡ |f(q)|

n , and missf (q) ≡
|Γk(q)\f(q)|

k , both of which have range [0, 1] (εmissf (q) can be substituted for missf (q) throughout
this section).

Suppose a data structure f is chosen from some class F , so as to have low empirical cost
1
m

m∑
i=1

sizef (qi) and
1
m

m∑
i=1

missf (qi).

1Dp is p-stable if for any v ∈ Rd and Z, X1, . . . , Xd drawn iid from Dp, 〈v, X〉 d
= ‖v‖pZ. For example,

N (0, 1) is 2-stable.

4

Can we then conclude that data structure f will continue to perform well for subsequent queries
drawn from the underlying distribution on Q? In other words, are the empirical estimates above
necessarily close to the true expected values Eq∼Dsizef (q) and Eq∼Dmissf (q) ?

There is a wide range of uniform convergence results which relate the difference between empirical
and true expectations to the number of samples seen (in our case, m) and some measure of the
complexity of the two classes {sizef : f ∈ F} and {missf : f ∈ F}. The following is particularly
convenient to use, and is well-known [12, theorem 3.2].
Theorem 1. Let G be a set of functions from a set Z to [0, 1]. Suppose a sample z1, . . . , zm is drawn
from some underlying distribution on Z . Let Gm denote the restriction of G to these samples, that is,

Gm = {(g(z1), g(z2), . . . , g(zm)) : g ∈ G}.
Then for any δ > 0, the following holds with probability at least 1− δ:

sup
g∈G

∣∣∣∣∣Eg − 1
m

m∑
i=1

g(zi)

∣∣∣∣∣ ≤ 2

√
2 log |Gm|

m
+

√
log(2/δ)

m
.

This can be applied immediately to the kind of data structure used by LSH.
Definition 2. A (u1, . . . , ud, B)-rectilinear cell structure (RCS) in RD is a partition of RD into Bd
cells given by

x 7→ (h1(x · u1), . . . , hd(x · ud)),
where each hi : R→ {1, . . . , B} is a partition of the real line into B intervals.
Theorem 3. Fix any vectors u1, . . . , ud ∈ RD, and, for some positive integer B, let the set of data
structures F consist of all (u1, . . . , ud, B)-rectilinear cell structures in RD. Fix any database of n
points X ⊂ RD. Suppose there is an underlying distribution over queries in RD, from which m
sample queries q1, . . . , qm are drawn. Then

sup
f∈F

∣∣∣∣∣E[missf]− 1
m

m∑
i=1

missf (qi)

∣∣∣∣∣ ≤ 2

√
2d(B − 1) log(m+ n)

m
+

√
log(2/δ)

m

and likewise for sizef .

Proof. Fix any X = {x1, . . . , xn} and any q1, . . . , qm. In how many ways can these points be
assigned to cells by the class of all (u1, . . . , ud, B)-rectilinear data structures? Along each axis ui
there are B − 1 boundaries to be chosen and only m+ n distinct locations for each of these (as far
as partitioning of the xi’s and qi’s is concerned). Therefore there are at most (m+n)d(B−1) ways to
carve up the points. Thus the functions {missf : f ∈ F} (or likewise, {sizef : f ∈ F}) collapse to
a set of size just (m+ n)d(B−1) when restricted to m queries; the rest follows from theorem 1.

This is good generalization performance because it depends only on the projected dimension, not
the original dimension. It holds when the projection directions u1, . . . , ud are chosen randomly, but,
more remarkably, even if they are chosen based on X (for instance, by running PCA on X). If we
learn the projections as well (instead of using random ones) the bound degrades substantially.
Theorem 4. Consider the same setting as Theorem 3, except that now F ranges over
(u1, . . . , ud, B)-rectilinear cell structures for all choices of u1, . . . , ud ∈ RD. Then with proba-
bility at least 1− δ,

sup
f∈F

∣∣∣∣∣E[missf]− 1
m

m∑
i=1

missf (qi)

∣∣∣∣∣ ≤ 2

√
2 + 2d(D +B − 2) log(m+ n)

m
+

√
log(2/δ)

m

and likewise for sizef .

Proof. Again, fix any X = {x1, . . . , xn} and any q1, . . . , qm; this time there are a lot more ways
to partition these points into cells. For each 1 ≤ i ≤ d, first a direction ui needs to be specified,
then a binning along that direction. The B−1 bin boundaries are parallel hyperplanes; imagine first
selecting one of them. By standard results, for instance [13, page 233], there are a total of at most
2(m+n)D ways to do this. Then pick theB−2 hyperplanes parallel to this first one: for each, there
are m + n choices. Thus there are at most 2(m + n)D+B−2 ways to select the binning for each i,
and thus at most 2(m+ n)d(D+B−2) ways to divide the database points and queries into cells.

5

ann2fig dumpSTD ann2fig dumpL

Figure 1: Left: Outer ring is the database; inner cluster of points are the queries. Center: KD-tree
with standard median splits. Right: KD-tree with learned splits.

KD-trees are slightly different than RCSs: the directions ui are simply the coordinate axes, and the
number of partitions per direction varies (e.g. one direction may have 10 partitions, another only 1).
Theorem 5. Let F be the set of all depth η KD-trees in RD and X ⊂ RD be a database of points.
Suppose there is an underlying distribution over queries in RD from which q1, . . . qm are drawn.
Then with probability at least 1− δ,

sup
f∈F

∣∣∣∣∣E[missf]− 1
m

m∑
i=1

missf (qi)

∣∣∣∣∣ ≤ 2

√
(2η+1 − 2) log (D(3m+ n))

m
+

√
log (2/δ)

m

Proof. Consider a depth 1 KD-tree (single split). There are D possible directions to choose; and for
each, there are at most 3m+ n possible divider locations. Each database point either falls to the left
or right of the boundary, giving the n. For the sample query points, each query either falls to the left
or right, givingm, but we must add an additional 2m depending on whether the boundary falls close
enough to each q (on the right or left) to put it in the “too close” set.

At the next level, we are choosing splits for two separate sets: the points that fell on the left of the
first split and those on the right. We cannot treat these as two independent problems as the choice
of split on the right could affect sizef (q) for a query q on the left if it is close to the boundary. At
depth two, then, there are at most D(3m+n) ·D(3m+n) = (D(3m+n))2 possible total choices
for the two boundaries. For a depth η tree we have at most

η∏
i=1

(D(3m+ n))2i

total possibilities. Applying the uniform convergence bound then gives the result.

A KD-tree utilizing median splits has depth η ≤ log n. The depth of a KD-tree with learned splits
can be higher, though we found empirically that the depth was always much less than 2 log n (and
can of course be restricted manually). KD-trees require significantly more samples than RCSs to
generalize; the class of KD-trees is much more complex than that of RCSs.

6 Experiments

6.1 KD-trees

First let us look at a simple example comparing the learned splits to median splits. Figure 1 shows
a 2-dimensional dataset and the cell partitions produced by the learned splits and the median splits.
The KD-tree constructed with the median splitting rule places nearly all of the boundaries running
right through the queries. As a result, nearly the entire database will have to be searched for queries
drawn from the center cluster distribution. The KD-tree with the learned splits places most of the
boundaries right around the actual database points, ensuring that fewer leaves will need to be exam-
ined for each query. We compare the actual numbers below (“Toy” in second table below).

We now show results on several datasets from the UCI repository and 2004 KDD cup competition.
We restrict attention to relatively low-dimensional datasets (D < 100) since that is the domain

6

in which KD-trees are typically applied. These experiments were all conducted using a modified
version of Mount and Arya’s excellent KD-tree software [14]. For the first set of experiments, we
used a randomly selected subset of the dataset as the database and a separate small subset as the test
queries. For the sample queries, we used the database itself—i.e. no additional data was used to
build the learned KD-tree.

The following table shows the results. We compare performance in terms of the average number of
database points we have to compute distances to on a test set.

data set DB size test pts dim # distance calculations %
median split learned split improvement

Corel (UCI) 32k 5k 32 1035.7 403.7 61.0
Covertype (UCI) 100k 10k 55 20.8 18.4 11.4

Letter (UCI) 18k 2k 16 470.1 353.8 27.4
Pen digits (UCI) 9k 1k 16 168.9 114.9 31.9

Bio (KDD) 100k 10k 74 1409.8 1310.8 7.0
Physics (KDD) 100k 10k 78 1676.6 404.0 75.9

The learned method outperforms the standard method on all of the datasets, showing a very large im-
provement on several of them. Note also that even the standard method exhibits good performance,
often requiring distance calculations to less than one percent of the database. We are showing strong
improvements on what are already quite good results.

What about when the query distribution is different than the database distribution? We took the
datasets above that split into multiple classes and divided them into separate query and database
sets. The following table shows the performance comparison.

data set query/DB train pts DB size # distance calculations %
median split learned split improvement

Covertype {1}/{2-8} 30k 100k 4387.0 31.5 99.3
Letter {w-z}/{a-v} 2.5k 16k 2108.2 1529.6 27.4

Pen digits {4}/{0-3, 5-9} 1k 9k 1860.6 1410.9 24.2
Toy cluster/ring 250 200 162.9 78.4 51.9

Notice how the performance of KD-trees has degraded as compared to the previous experiments.
We see a dramatic improvement for the Covertype dataset, and a reasonably strong improvement for
the rest of the datasets.

We additionally experimented with the ‘Corel50’ image dataset. It is divided into 50 classes (e.g.
air shows, bears, tigers, fiji) containing 100 images each. We used the 371-dimensional “semantic
space” representation of the images recently developed in a series of image retrieval papers (see e.g.
[15]). This dataset allows us to explore the effect of differing query and database distributions in
a natural setting. It also demonstrates that KD-trees with learned parameters can perform well on
high-dimensional data.

Figure 2 shows the results of running KD-trees using median and learned splits. In each case, 4000
images were chosen for the database (from across all the classes) and images from select classes
were chosen for the queries. The “All” queries were chosen from all classes; the “Animals” were
chosen from the 11 animal classes; the “N. American animals” were chosen from 5 of the animal
clases; and the “Bears” were chosen from the two bear classes. Standard KD-trees are performing
somewhat better than brute force in these experiments. The learned KD-trees yield much faster
retrieval times across a range of approximation errors.

Figure 3 shows the number of distance calculations versus the query distributions. The learning
method is able to take advantage of simpler query distributions, whereas the performance of the
standard method actually degrades.

6.2 RCS/LSH

Figure 4 is a simple example showing the effect of the learning algorithm. The queries and DB are
drawn from the same distribution. Notice how the learning algorithm adjusts the bin boundaries to
the regions of density.

7

0

0.2

0.4

0.6

0.8

0 .1 .2 .3

Bears

standard KD-tree learned KD-tree

0

0.2

0.4

0.6

0.8

0 .1 .2 .3

N. American animals

0

0.2

0.4

0.6

0.8

0 .1 .2 .3

All animals

0

0.2

0.4

0.6

0.8

0 .1 .2 .3

Everything

Figure 2: Percentage of DB examined as a function of ε (the approximation factor) for various query
distributions.

20

35

50

65

80

 All (50) Animals (11) N. Am. Animals (5) Bears (2)

standard KD-tree learned KD-tree

Figure 3: Percentage of DB examined for exact NN search as a function of the query distribution.
Quantity in parentheses denotes the number of classes queries were drawn from.

Random boundaries Tuned boundariesRandom boundaries Tuned boundaries

Figure 4: Example RCSs. Left: Standard RCS. Right: Learned RCS

8

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

miss rate

siz
e

ra
te

 (f
ra

ct
io

n
of

 D
B)

Standard

Tuned

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

miss rate

siz
e

ra
te

 (f
ra

ct
io

n
of

 D
B)

Physics

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

MNIST

miss rate

siz
e

ra
te

 (f
ra

ct
io

n
of

 D
B)

Standard

Tuned

Figure 5: Left: Physics dataset. Right: MNIST dataset.

Experimenting with RCS structures is somewhat challenging since there are two parameters to set
(number of projections, number of boundaries), an approximation factor ε, and two quantities to
compare (size and miss). We compare the size and miss rates of standard RCSs to tuned ones.
We swept over the two parameters to get results for the standard RCSs. Results for learned RCSs
were obtained using only a single (essentially unoptimized) setting of the parameters. Rather than
minimizing a tradeoff between sizef and missf , we constrained the miss rate and optimized the
sizef . The constraint was varied between runs (e.g. 2%, 4%, etc.) to get results comparable to the
standard RCS runs.

Figure 5 shows the comparison on databases of 10k points drawn from the MNIST and Physics
datasets (2.5k points were used as sample queries). We see a marked improvement for the Physics
dataset and a small improvement for the MNIST dataset. We suspect that the learning algorithm
helps substantially for the physics data because the one-dimensional projections are highly non-
uniform whereas the MNIST one-dimensional projections are much more uniform.

7 Conclusion

The primary contribution of this paper is demonstrating that building a NN search structure can be
fruitfully viewed as a learning problem. We used this framework to develop algorithms that learn
RCSs and KD-trees optimized for a query distribution. We suspect that this framework can be
applied to develop learning algorithms for other data structures, including those designed for search
in more general types of spaces and those geared towards intrinsically low-dimensional spaces.

We expect that even stronger results may be obtained by using the framework to develop a novel
data structure from the ground up, rather than to simply tune an existing data structure. Moreover,
margin-based generalization bounds may allow the use of richer classes of data structures.

Acknowledgements
Thanks to Nikhil Rasiwasia, Sunhyoung Han, and Nuno Vasconcelos for providing the Corel50 data.

References
[1] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic

expected time. ACM Transactions on Mathematical Software, 3(3):209–226, 1977.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for approximate
nearest neighbor searching. Journal of the ACM, 45(6):891–923, 1998.

[3] T. Liu, A. W. Moore, A. Gray, and K. Yang. An investigation of practical approximate neighbor algo-
rithms. In Neural Information Processing Systems (NIPS), 2004.

[4] S. Dasgupta and Y. Freund. Random projection trees and low dimensional manifolds. Technical report,
UCSD, 2007.

[5] P. Indyk. Nearest neighbors in high dimensional spaces. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry. CRC Press, 2006.

9

[6] M. T. Orchard. A fast nearest-neighbor search algorithm. In ICASSP, pages 2297–3000, 1991.

[7] E. Vidal. An algorithm for finding nearest neighbours in (approximately) constant average time. Pattern
Recognition Letters, 4:145–157, 1986.

[8] S. Omohundro. Five balltree construction algorithms. Technical report, ICSI, 1989.

[9] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In ICML, 2006.

[10] K. L. Clarkson. Nearest-neighbor searching and metric space dimensions. In Nearest-Neighbor Methods
for Learning and Vision: Theory and Practice, pages 15–59. MIT Press, 2006.

[11] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing scheme
based on p-stable distributions. In SCG 2004, pages 253–262, New York, NY, USA, 2004. ACM Press.

[12] O. Bousquet, S. Boucheron, and G. Lugosi. Theory of classification: a survey of recent advances. ESAIM:
Probability and Statistics, 9:323–375, 2004.

[13] L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer, 1996.

[14] D. Mount and S. Arya. ANN library. http://www.cs.umd.edu/∼mount/ANN/.

[15] N. Rasiwasia, P. Moreno, and N. Vasconcelos. Bridging the gap: query by semantic example. IEEE
Transactions on Multimedia, 2007.

10

