
Efficient Bregman Range Search

Lawrence Cayton
Max Planck Institute for Biological Cybernetics

lcayton@tuebingen.mpg.de

Abstract

We develop an algorithm for efficient range search when the notion of dissim-
ilarity is given by a Bregman divergence. The range search task is to return
all points in a potentially large database that are within some specified distance
of a query. It arises in many learning algorithms such as locally-weighted re-
gression, kernel density estimation, neighborhood graph-based algorithms, and in
tasks like outlier detection and information retrieval. In metric spaces, efficient
range search-like algorithms based on spatial data structures have been deployed
on a variety of statistical tasks. Here we describe an algorithm for range search
for an arbitrary Bregman divergence. This broad class of dissimilarity measures
includes the relative entropy, Mahalanobis distance, Itakura-Saito divergence, and
a variety of matrix divergences. Metric methods cannot be directly applied since
Bregman divergences do not in general satisfy the triangle inequality. We derive
geometric properties of Bregman divergences that yield an efficient algorithm for
range search based on a recently proposed space decomposition for Bregman di-
vergences.

1 Introduction

Range search is a fundamental proximity task at the core of many learning problems. The task of
range search is to return all points in a database within a specified distance of a given query. The
problem is to do so efficiently, without examining the entire database. Many machine learning algo-
rithms require range search. Locally weighted regression and kernel density estimation/regression
both require retrieving points in a region around a test point. Neighborhood graphs—used in mani-
fold learning, spectral algorithms, semisupervised algorithms, and elsewhere—can be built by con-
necting each point to all other points within a certain radius; doing so requires range search at
each point. Computing point-correlation statistics, distance-based outliers/anomalies, and intrinsic
dimensionality estimates also requires range search.

A growing body of work uses spatial data structures to accelerate the computation of these and other
proximity problems for statistical tasks. This line of techniques, coined “n-body methods” in [11],
has showed impressive speedups on a variety of tasks including density estimation [12], gaussian
process regression [25], non-parametric classification [17], matrix approximation [14], and kernel
summation [15]. These methods achieve speedups by pruning out large portions of the search space
with bounds derived from KD or metric trees that are augmented with statistics of the database.
Some of these algorithms are direct applications of range search; others rely on very similar pruning
techniques. One fairly substantial limitation of these methods is that they all derive bounds from the
triangle inequality and thus only work for notions of distance that are metrics.

The present work is on performing range search efficiently when the notion of dissimilarity is not
a metric, but a Bregman divergence. The family of Bregman divergences includes the standard `22
distance, Mahalanobis distance, KL-divergence, Itakura-Saito divergence, and a variety of matrix
dissimilarity measures. We are particularly interested in the KL-divergence, as it is not a metric and
is used extensively in machine learning. It appears naturally in document analysis, since documents

1



are often modeled using histograms [22, 5]. It also is used in many vision applications [23], such as
content-based image retrieval [24]. Because Bregman divergences can be asymmetric and need not
satisfy the triangle inequality, the traditional metric methods cannot be applied.

In this work we present an algorithm for efficient range search when the notion of dissimilarity
is an arbitrary Bregman divergence. These results demonstrate that the basic techniques behind
the previously described efficient statistical algorithms can be applied to non-metric dissimilarities
including, notably, the KL-divergence. Because of the widespread use of histogram representations,
this generalization is important.

The task of efficient Bregman range search presents a technical challenge. Our algorithm cannot
rely on the triangle inequality, so bounds must be derived from geometric properties of Bregman
divergences. The algorithm makes use of a simple space decomposition scheme based on Bregman
balls [8], but deploying this decomposition for the range search problem is not straightforward. In
particular, one of the bounds required results in a non-convex program to be solved, and the other
requires comparing two convex bodies. We derive properties of Bregman divergences that imply
efficient algorithms for these problems.

2 Background

In this section, we briefly review prior work on Bregman divergences and proximity search. Breg-
man divergences originate in [7] and have become common in the machine learning literature, e.g.
[3, 4].

Definition 1. Let f : RD → R be strictly convex and differentiable. The Bregman divergence based
on f is

df (x, y) ≡ f(x)− f(y)− 〈∇f(y), x− y〉.

As can be seen from the definition, a Bregman divergence measures the distance between a func-
tion and its first-order taylor series approximation. Standard examples include f(x) = 1

2‖x‖
2
2,

yielding the `22 distance df (x, y) = 1
2‖x− y‖

2
2, and f(x) =

∑
i xi log xi, giving the KL-divergence

df (x, y) =
∑
i xi log xi

yi
The Itakura-Saito divergence and Mahalanobis distance are other examples

of Bregman divergences.

Strict convexity of f implies that df (x, y) ≥ 0, with equality if, and only if, x = y. Though Bregman
divergences satisfy this non-negativity property, like metrics, the similarities to metrics end there. In
particular, a Bregman divergence need not satisfy the triangle inequality or be symmetric.

Bregman divergences do possess several geometric properties related to the convexity of the base
function. Most notably, df (x, y) is always convex in x (though not necessarily in y), implying that
the Bregman ball

Bf (µ,R) ≡ {x | df (x, µ) ≤ R}

is a convex body.

Recently, work on a variety of geometric tasks with Bregman divergences has appeared. In [19],
geometric properties of Bregman voronoi diagrams are derived. [1] studies core-sets under Bregman
divergences and gives a provably correct approximation algorithm for k-median clustering. [13]
examines sketching Bregman (and Csiszár) divergences. [8] describes the Bregman ball tree in the
context of nearest neighbor search; we will describe this work further momentarily. As these papers
demonstrate, there has been substantial recent interest in developing basic geometric algorithms for
Bregman divergences. The present paper contributes an effective algorithm for range search, one of
the core problems of computational geometry [2], to this repertoire.

The Bregman ball tree (BB-tree) was introduced in the context of nearest neighbor (NN) search [8].
Though NN search has a similar flavor to range search, the bounds that suffice for NN search are
not sufficient for range search. Thus the utility of the BB-tree for statistical tasks is at present rather
seriously limited. Moreover, though the extension of metric trees to range search (and hence to the
previously described statistical tasks) is fairly straightforward because of the triangle inequality, the
extension of BB-trees is substantially more complex.

2



Several other papers on Bregman proximity search have appeared very recently. Nielsen et al. study
some improvements to the BB-tree [21] and develop a related data structure which can be used with
symmetrized divergences [20]. Zhang et al. develop extensions of the VA-file and the R-tree for
Bregman divergences [26]. These data structures can be adapted to work for Bregman divergences,
as the authors of [26] demonstrate, because bounds on the divergence from a query to a rectan-
gular cell can be computed cheaply; however this idea appears limited to decomposable Bregman
divergences—divergences that decompose into a sum over one-dimensional divergences.1 Never-
theless, these data structures seem practical and effective and it would be interesting to apply them
to statistical tasks.2 The applicability of rectangular cell bounds was independently demonstrated
in [9, Chapter 7], where it is mentioned that KD-trees (and relatives) can be used for decomposable
Bregman divergences. That chapter also contains theoretical results on the general Bregman range
search problem attained by adapting known data structures via the lifting technique (also used in
[26] and previously in [19]).

3 Range search with BB-trees

In this section, we review the Bregman ball tree data structure and outline the range search algorithm.
The search algorithm relies on geometric properties of Bregman divergences, which we derive in
section 4.

The BB-tree is a hierarchical space decomposition based on Bregman balls. It is a binary tree
defined over the database such that each level provides a partition of the database points. As the
tree is descended, the partition becomes finer and finer. Each node i in the tree owns a subset of the
points Xi and also defines a Bregman ball Bf (µ,R) such that Xi ⊂ Bf (µ,R). If i is an interior
node, it has two children j and k that encapsulate database points Xj and Xk. Moreover, each point
in Xi is in exactly one of Xj and Xk. Each leaf node contains some small number of points and the
root node contains the entire database.

Here we use this simple form of BB-tree, though our results apply to any hierarchical space decom-
position based on Bregman balls, such as the more complex tree described in [21].

To encourage a rapid rate of radius decrease, an effective build algorithm will split a node into two
well-separated and compact children. Thus a reasonable method for building BB-trees is to per-
form a top-down hierarchical clustering. Since k-means has been generalized to arbitrary Bregman
divergences [4], it is a natural choice for a clustering algorithm.

3.1 Search algorithm

We now turn to the search algorithm, which uses a branch-and-bound approach. We develop the
necessary novel bounding techniques in the next section.

Suppose we are interested in returning all points within distance γ of a query q—i.e. we hope to
retrieve all database points lying inside of Bq ≡ Bf (q, γ). The search algorithm starts at the root
node and recursively explores the tree. At a node i, the algorithm compares the node’s Bregman ball
Bx to Bq . There are three possible situations. First, if Bx is contained in Bq , then all x ∈ Bx are in
the range of interest. We can thus stop the recursion and return all the points associated with the node
without explicitly computing the divergence to any of them. This type of pruning is called inclusion
pruning. Second, if Bx ∩ Bq = ∅, the algorithm can prune out Bx and stop the recursion; none
of these points are in range. This is exclusion pruning. See figure 1. All performance gains from
using the algorithm come from these two types of pruning. The third situation is Bx ∩ Bq 6= ∅ and
Bx 6⊂ Bq . In this situation, the algorithm cannot perform any pruning, so recurses on the children
of node i. If i is a leaf node, then the algorithm computes the divergence to each database point
associated with i and returns those elements within range.

The two types of pruning—inclusion and exclusion—have been applied to a variety of problems
with metric and KD-trees, see e.g. [11, 12, 25] and the papers cited previously. Thus though we

1This assumption is implicit in the proof of [26, Lemma 3.1] and is used in the revised lower bound com-
putation as well.

2[26] had yet not been published at the time of submission of the present work and hence we have not yet
done a detailed comparison.

3



Exclusion Inclusion

Figure 1: The two pruning scenarios. The dotted, shaded object is the query range and the other is
the Bregman ball associated with a node of the BB-tree.

focus on range search, these types of prunings are useful in a broad range of statistical problems. A
third type of pruning, approximation pruning, is useful in tasks like kernel density estimation [12].
This type of pruning is another form of inclusion pruning and can be accomplished with the same
technique.

It has been widely observed that the performance of spatial decomposition data structures, degrades
with increasing dimensionality. In order to manage high-dimensional datasets, practitioners often
use approximate proximity search techniques [8, 10, 17]. In the experiments, we explore one way
to use the BB-tree in an approximate fashion.

Determining whether two Bregman balls intersect, or whether one Bregman ball contains another,
is non-trivial. For the range search algorithm to be effective, it must be able to determine these
relationships very quickly. In the case of metric balls, these determinations are trivially accom-
plished using the triangle inequality. Since we cannot rely on the triangle inequality for an arbitrary
Bregman divergence, we must develop novel techniques.

4 Computation of ball intersection

In this section we lay out the main technical contribution of the paper. We develop algorithms for
determining (1) whether one Bregman ball is contained in another and (2) whether two Bregman
balls have non-empty intersection.

4.1 Containment

Let Bq ≡ Bf (µq, Rq) and Bx ≡ Bf (µx, Rx). We wish to evaluate if Bx ⊂ Bq . This problem is
equivalent to testing whether

df (x, µq) ≤ Rq
for all x ∈ Bx. Simplifying notation, the core problem is determining

max
x

df (x, q)

subject to: df (x, µ) ≤ R. (maxP)

Unfortunately, this problem is not convex. As is well-known, non-convex problems are in general
much more computationally difficult to solve than convex ones. This difficulty is particularly prob-
lematic in the case of range search, as the search algorithm will need to solve this problem repeatedly
in the course of evaluating a singe range query. Moreover, finding a sub-optimal solution (i.e. a point
x ∈ Bf (µ,R) that is not the max) will render the solution to the range search incorrect.

Remarkably, beneath (maxP) lies a geometric structure that allows an efficient solution. We now
show the main claim of this section, which implies a simple, efficient algorithm for solving (maxP).
We denote the convex conjugate of f by

f∗(x) ≡ sup
y
{〈x, y〉 − f(y)}

and define x′ ≡ ∇f(x), q′ ≡ ∇f(q), etc.

4



Claim 1. Suppose that the domain of f is C and that Bf (µ,R) ⊂ relint(C). Furthermore, assume
that ‖∇2f∗(x′)‖ is lower-bounded for all x′ such that x ∈ Bf (µ,R). Let xp be the optimal solution
to (maxP). Then x′p lies in the set {θµ′ + (1− θ)q′ | θ ≥ 0}.

Proof. Though the program is not concave, the Lagrange dual still provides an upper bound on the
optimal solution value (by weak duality). The Lagrangian is

ν(x, λ) ≡ df (x, q)− λ(df (x, µ)−R), (1)

where λ ≥ 0.

Differentiating (1) with respect to x and setting it equal to 0, we get

∇f(xp)−∇f(q)− λ∇f(xp) + λ∇f(µ) = 0,

which implies that

∇f(xp) =
1

1− λ
(∇f(q)− λ∇f(µ)) . (2)

We need to check what type of extrema∇f(xp) = 0 is:

∇2
xν(x, λ) = (1− λ)∇2f(x).

Thus for λ > 1, the xp defined implicitly in (2) is a maximum. Setting θ ≡ − λ
1−λ gives

∇f(xp) = θµ′ + (1− θ)q′,
where θ ∈ (−∞, 0) ∪ (1,∞); we restrict attention to θ ∈ (1,∞) since that is where λ > 1 and
hence xp is a maximum. Let x′θ ≡ θµ′ + (1− θ)q′ and xθ ≡ ∇f∗(x′θ). The Lagrange dual is

L(θ) ≡ df (xθ, q) +
θ

1− θ
(df (xθ, µ)−R).

Then for any θ ∈ (1,∞), we have

df (xp, q) ≤ L(θ) (3)

by weak duality. We now show that there is a θ∗ > 1 satisfying df (xθ∗ , µ) = R. One can check
that the derivative of df (xθ, µ) with respect to θ is

(θ − 1)(µ′ − q′)>∇2f∗(x′θ)(µ
′ − q′). (4)

Since ‖∇2f∗‖ > c, for some positive c, (4) is at least (θ−1)‖µ′−q′‖c. We conclude that df (xθ, µ)
is increasing at an increasing rate with θ. Thus there must be some θ∗ > 1 such that df (xθ∗ , µ) = R.
Plugging this θ∗ into the dual, we get

L(θ∗) = df (xθ∗ , q) +
θ∗

1− θ∗
(df (xθ∗ , µ)−R)

= df (xθ∗ , q).

Combining with (3), we have

df (xp, q) ≤ df (xθ∗ , µ).

Finally, since (maxP) is a maximization problem and since xθ∗ is feasible, the previous inequality is
actually an equality, giving the theorem.

Thus determining if Bx ⊂ Bq reduces to searching for θ∗ > 1 satisfying

df (xθ∗ , µx) = Rx

and comparing df (xθ∗ , µq) to Rq . Note that there is no obvious upper bound on θ∗ in general,
though one may be able to derive such a bound for a particular Bregman divergence. Without such
an upper bound, one needs to use a line search method that does not require one, such as Newton’s
method or the secant method. Both of these line search methods will converge quickly (quadratic in
the case of Newton’s method, slightly slower in the case of the secant method): since df (xθ, µx) is
monotonic in θ, there is a unique root.

Interestingly, the convex program evaluated in [8] has a similar solution space, which we will again
encounter in the next section.

5



4.2 Non-empty intersection

In this section we provide an algorithm for evaluating whether Bq ∩Bx = ∅. We will need to make
use of the Pythagorean theorem, a standard property of Bregman divergences.
Theorem 1 (Pythagorean). Let C ⊂ RD be a convex set and let x ∈ C. Then for all z, we have

df (x, z) ≥ df (x, y) + df (y, z),

where y ≡ argminy∈Cdf (y, z) is the projection of z onto C.

At first glance, the Pythagorean theorem may appear to be a triangle inequality for Bregman diver-
gences. However, the inequality is actually the reverse of the standard triangle inequality and only
applies to the very special case when y is the projection of z onto a convex set containing x. We
now prove the main claim of this section.
Claim 2. Suppose that Bx ∩Bq 6= ∅. Then there exists a w in

{∇f∗(θµ′x + (1− θ)µ′q) | θ ∈ [0, 1]}
such that w ∈ Bq ∩Bx.

Proof. Let z ∈ Bx ∩ Bq . We will refer to the set {∇f∗(θµ′x + (1− θ)µ′q) | θ ∈ [0, 1]} as the dual
curve.

Let x be the projection of µq onto Bx and let q be the projection of µx onto Bq . Both x and q are on
the dual curve (this fact follows from [8, Claim 2]), so we are done if we can show that at least one
of them lies in the intersection of Bx and Bq . Suppose towards contradiction that neither are in the
intersection.

The projection of x onto Bq lies on the dual curve between x and µy; thus projecting x onto Bq
yields q and similarly projecting q onto Bx yields x. By the Pythagorean theorem,

df (z, x) ≥ df (z, q) + df (q, x), (5)

since q is the projection of x onto Bq and since z ∈ Bq . Similarly,

df (z, q) ≥ df (z, x) + df (x, q). (6)

Inserting (5) into (6), we get

df (z, q) ≥ df (z, q) + df (q, x) + df (x, q).

Rearranging, we get that df (q, x) + df (x, q) ≤ 0. Thus both df (q, x) = 0 and df (x, q) = 0,
implying that x = q. But since x ∈ Bx and q ∈ Bq , we have that x = q ∈ Bq ∩ Bq . This is the
desired contradiction.

The proceeding claim yields a simple algorithm for determining whether two balls Bx and Bq are
disjoint: project µx onto Bq using the line search algorithm discussed previously. The projected
point will obviously be inBq; if it is also inBx, the two balls intersect.3 Otherwise, they are disjoint
and exclusion pruning can be performed.

5 Experiments

We compare the performance of the search algorithm to standard brute force search on several
datasets. We are particularly interested in text applications as histogram representations are com-
mon, datasets are often very large, and efficient search is broadly useful. We experimented with the
following datasets, many of which are fairly high-dimensional.

• pubmed-D. We used one million documents from the pubmed abstract corpus (available
from the UCI collection). We generated a correlated topic model (CTM) [5] with D =
4, 8, . . . , 256 topics. For each D, we built a CTM using a training set and then performed
inference on the 1M documents to generate the topic histograms.

3Claim 2 actually only shows that at least one of two projections—µx onto Bq and µq onto Bx—will be in
the intersection. However, one can show that both projections will be in the intersection using the monotonicity
of df (xθ, ·) in θ.

6



0 0.2 0.4 0.6 0.8 1 1.2
100

101

102

103

104
corel

0 0.2 0.4 0.6 0.8 1 1.2
100

101

102

103

104
pmed4 − pmed32

pmed4
pmed8
pmed16
pmed32

0 0.2 0.4 0.6 0.8 1 1.2
100

101

102

103

104
pmed64 − pmed256

pmed64
pmed128
pmed256

0 0.2 0.4 0.6 0.8 1 1.2
100

101

102

103

104
rcv8−rcv32

rcv8
rcv16
rcv32

0 0.2 0.4 0.6 0.8 1 1.2
100

101

102

103

104
rcv64 − rcv256

rcv64
rcv128
rcv256

0 0.2 0.4 0.6 0.8 1 1.2
100

101

102

103

104
semantic space

Figure 2: Approximate search. The y-axis is on a logarithmic scale and is the speedup over brute
force search. The x axis is a linear scale and is the average percentage of the points in range returned
(i.e. the average recall).

• Corel histograms. This data set consists of 60k color histograms of dimensionality 64
generated from the Corel image datasets.

• rcv-D. Latent dirichlet allocation was applied to 500K documents from the rcv1 [16]
corpus to generate topic histograms for each [6]. D is set to 8, 16, 32, . . . 256.

• Semantic space. This dataset is a 371-dimensional representation of 5000 images from the
Corel stock photo collection. Each image is represented as a distribution over keywords
[24].

All of our experiments are for the KL-divergence. Although the KL-divergence is widely used, little
is known about efficient proximity techniques for it. In contrast, the `22 and Mahalanobis distances
can be handled by metric methods, for which there is a huge literature. Application of the range
search algorithm for the KL-divergence raises one technical point: Claim 1 requires that the KL-
ball being investigated lies within the domain of the KL-divergence. It is possible that the ball will
cross the domain boundary (xi = 0), though we found that this was not a significant issue. When
it did occur (which can be checked by evaluating df (µ, xθ) for large θ), we simply did not perform
inclusion pruning for that node.

There are two regimes where range search is particularly useful: when the radius γ is very small and
when it is large. When γ is small, range search is useful in instance-based learning algorithms like
locally weighted regression, which need to retrieve points close to each test point. It is also useful
for generating neighborhood graphs. When γ is large enough that Bf (q, γ) will contain most of the
database, range search is potentially useful for applications like distance-based outlier detection and
anomaly detection. We provide experiments for both of these regimes.

Table 1 shows the results for exact range search. For the small radius experiments, γ was chosen so
that about 20 points would be inside the query ball (on average). On the pubmed datasets, we are
getting one to two orders of magnitude speed-up across all dimensionalities. On the rcv datasets,
the BB-tree range search algorithm is an order of magnitude faster than brute search except of the
the two datasets of highest dimensionality. The algorithm provides a useful speedup on corel, but
no speedup on semantic space. We note that the semantic space dataset is both high-dimensional
(371 dimensions) and quite small (5k), which makes it very hard for proximity search. The algo-
rithm reflects the widely observed phenomenon that the performance of spatial decomposition data
structures degrades with dimensionality, but still provides a useful speedup on several moderate-
dimensional datasets.

7



Table 1: Exact range search.

speedup
dataset dimensionality small radius large radius
corel 64 2.53 3.4
pubmed4 4 371.6 5.1
pubmed8 8 102.7 9.7
pubmed16 16 37.3 12.8
pubmed32 32 18.6 47.1
pubmed64 64 13.26 21.6
pubmed128 128 15.0 120.4
pubmed256 256 18.9 39.0
rcv8 8 48.1 8.9
rcv16 16 23.0 21.9
rcv32 32 16.4 16.4
rcv64 64 11.4 9.6
rcv128 128 6.1 3.1
rcv256 256 1.1 1.9
semantic space 371 .7 1.0

For the large radius experiments, γ was chosen so that all but about 100-300 points would be in
range. The results here are more varied than for small γ, but we are still getting useful speedups
across most of the datasets. Interestingly, the amount of speedup seems less dependent of the di-
mensionality in comparison to the small γ experiments.

Finally, we investigate approximate search, which we consider the most likely use of this algorithm.
There are many ways to use the BB-tree in an approximate way. Here, we follow [18] and simply
cut-off the search process early. We are thus guaranteed to get only points within the specified
range (perfect precision), but we may not get all of them (less than perfect recall). In instance-based
learning algorithms, this loss of recall is often tolerable as long as a reasonable number of points are
returned. Thus a practical way to deploy the range search algorithm is to run it until enough points
are recovered. In this experiment, γ was set so that about 50 points would be returned. Figure 2
shows the results.

These are likely the most relevant results to practical applications. They demonstrate that the pro-
posed algorithm provides a speedup of up to four orders of magnitude with a high recall.

6 Conclusion

We presented the first algorithm for efficient ball range search when the notion of dissimilarity
is an arbitrary Bregman divergence. This is an important step towards generalizing the efficient
proximity algorithms from `2 (and metrics) to the family of Bregman divergences, but there is plenty
more to do. First, it would be interesting to see if the dual-tree approach promoted in [11, 12] and
elsewhere can be used with BB-trees. This generalization appears to require more complex bounding
techniques than those discussed here. A different research goal is to develop efficient algorithms for
proximity search that have rigorous guarantees on run-time; theoretical questions about proximity
search with Bregman divergences remain largely open. Finally, the work in this paper provides a
foundation for developing efficient statistical algorithms using Bregman divergences; fleshing out
the details for a particular application is an interesting direction for future research.

References

[1] Marcel Ackermann and Johannes Blömer. Coresets and approximate clustering for bregman
divergences. In Proceedings of the Symposium on Discrete Algorithms (SODA), 2009.

[2] Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives. In Advances
in Discrete and Computational Geometry, pages 1–56. American Mathematical Society, 1999.

[3] Katy Azoury and Manfred Warmuth. Relative loss bounds for on-line density estimation with
the exponential family of distributions. Machine Learning, 43(3):211–246, 2001.

8



[4] Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, and Joydeep Ghosh. Clustering with
bregman divergences. Journal of Machine Learning Research, Oct 2005.

[5] David Blei and John Lafferty. A correlated topic model of Science. Annals of Applied Statistics,
1(1):17–35, 2007.

[6] David Blei, Andrew Ng, and Michael Jordan. Latent dirichlet allocation. Journal of Machine
Learning Research, 2003.

[7] L.M. Bregman. The relaxation method of finding the common point of convex sets and its
application to the solution of problems in convex programming. USSR Computational Mathe-
matics and Mathematical Physics, 7(3):200–217, 1967.

[8] Lawrence Cayton. Fast nearest neighbor retrieval for bregman divergences. In Proceedings of
the International Conference on Machine Learning, 2008.

[9] Lawrence Cayton. Bregman Proximity Search. PhD thesis, University of California, San Diego,
2009.

[10] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hash-
ing scheme based on p-stable distributions. In Symposium on Computational Geometry, 2004.

[11] Alexander Gray and Andrew Moore. ‘N-body’ problems in statistical learning. In Advances
in Neural Information Processing Systems, 2000.

[12] Alexander Gray and Andrew Moore. Nonparametric density estimation: Toward computa-
tional tractability. In SIAM International Conference on Data Mining, 2003.

[13] Sudipto Guha, Piotr Indyk, and Andrew McGregor. Sketching information divergences. In
Conference on Learning Theory, 2007.

[14] Michael P. Holmes, Alexander Gray, and Charles Lee Isbell. QUIC-SVD: Fast SVD using
cosine trees. In Advances in Neural Information Processing Systems 21, 2008.

[15] Dongryeol Lee and Alexander Gray. Fast high-dimensional kernel summations using the monte
carlo multipole method. In Advances in Neural Information Processing Systems 21, 2008.

[16] D. D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for text catego-
rization research. Journal of Machine Learning Research, 2004.

[17] Ting Liu, Andrew Moore, and Alexander Gray. New algorithms for efficient high-dimensional
nonparametric classification. Journal of Machine Learning Research, 2006.

[18] Ting Liu, Andrew Moore, Alexander Gray, and Ke Yang. An investigation of practical approx-
imate neighbor algorithms. In Advances in Neural Information Processing Systems, 2004.

[19] Frank Nielsen, Jean-Daniel Boissonnat, and Richard Nock. On bregman voronoi diagrams. In
Symposium on Discrete Algorithms, pages 746–755, 2007.

[20] Frank Nielsen, Paolo Piro, and Michel Barlaud. Bregman vantage point trees for efficient
nearest neighbor queries. In IEEE International Conference on Multimedia & Expo, 2009.

[21] Frank Nielsen, Paolo Piro, and Michel Barlaud. Tailored bregman ball trees for effective
nearest neighbors. In European Workshop on Computational Geometry, 2009.

[22] Fernando Pereira, Naftali Tishby, and Lillian Lee. Distributional clustering of English words.
In 31st Annual Meeting of the ACL, pages 183–190, 1993.

[23] Jan Puzicha, Joachim Buhmann, Yossi Rubner, and Carlo Tomasi. Empirical evaluation of
dissimilarity measures for color and texture. In Proceedings of the Internation Conference on
Computer Vision (ICCV), 1999.

[24] N. Rasiwasia, P. Moreno, and N. Vasconcelos. Bridging the gap: query by semantic example.
IEEE Transactions on Multimedia, 2007.

[25] Yirong Shen, Andrew Ng, and Matthias Seeger. Fast gaussian process regression using kd-
trees. In Advances in Neural Information Processing Systems, 2006.

[26] Zhenjie Zhang, Beng Chin Ooi, Srinivasan Parthasarathy, and Anthony Tung. Similarity search
on bregman divergence: towards non-metric indexing. In International Conference on Very
Large Databases (VLDB), 2009.

9


