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Why study it?

• NN search is a core subroutine in machine 
learning (and DB, CG, IR, theory ..)

• But it’s expensive, especially at test time.
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Why study it now?

• GPUs/multicore CPUs  = tremendous power for 
data analysis

• But unleashing this power requires a fundamental 
rethinking of algorithms and data structures.

* from Ars Technica, 15 June 2011.
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• Sublinear dependence on n

• “constant” dependent on intrinsic dimensionality, 
not extrinsic dimensionality

NN problem



Aside: extrinsic/intrinsic

Data often only appears high-d, 
but is actually intrinsically low-d.
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Want algs that scale with the intrinsic dim
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Motivation

(single core) brute force metric data struct

(many core) brute force

speed-up

speed-up

 this work (RBC)

speedup + speedup

want structural + algorithmic benefits.

NN problem



What works on many core?

matrix multiplication: it’s the operation that 
gets closest to using all of a processor.

*

• Many independent operations
• No conditionals
• High memory re-use + regular memory access



NN data structures

Hierarchically 
decompose space; 

hopefully will only 
have to look at a 

small part

Organize cells 
into a tree:

Explore using 
branch-and-bound



On many core?

• Conditional exploration
• Irregular memory accesses/little mem re-use 
• Ouch.



Problem setting

Database X = {x1, x2, . . . , xn}

Query q (or many queries Q)

( ∀q ∈ Q )

Metric ρ(·, ·)

Goal: return xi minimizing ρ(q, xi)



Brute force search

Call this procedure BF(Q, X).

If I ⊂ {1, . . . , n}, BF(Q, X[I]) only considers indices I .

For each query q ∈ Q, perform a linear scan of X ;

return the nearest.



BF(Q, X)

matrix-matrix 
multiplication

matrix-vector 
multiplication

BF(q,X)

Parallelization of both is incredibly well-studied

Parallelization of BF(Q, X)



1.  Compute distances via block decomposition

Q = X =

q1

...

qm

x1 xn. . .

Parallelization of BF(Q, X)



1.  Compute distances via block decomposition

Q = X =

2.  For each query, do a parallel-reduce on the distances

q1

...

qm

x1 xn. . .

Parallelization of BF(Q, X)



But..
Work is O(n) per query.



But..

This project:

Reduce the work to roughly O(
√

n) per query

Maintain the computational structure of BF(Q, X)

Work is O(n) per query.



Random ball cover - data structure

ball around representatives containing s points

r random representatives



Random ball cover - data structure

Notation: Lr - indices of points owned by rep r.



One-shot search algorithm

q

1. compute nearest representative



One-shot search algorithm cont.

q

2. find nearest point within set covered by 
nearest representative



One-shot algorithm: restatement

i.e. two brute force searches

(later, we’ll see that each is roughly O(
√

n) )

Call BF(q,R); get rep r back.

Call BF(q,X[Lr]).



Exact search algorithm

q

1. compute nearest representative

(same as before)



Exact search algorithm

q

2. prune out as many balls as possible



Exact search algorithm

q

3. Search the rest and return the nearest.



Exact search restatement

Call BF(q,R); get rep r back.

Compute lists L1, . . . , Lt that can not be pruned.

Call BF(q,X[L1 ∪ · · · ∪ Lt]).



Theory

Both algs have  

• O(
√
n) dependence on the data

• some dependence on the growth rate c,

where c ≈ 2intrinsic dim.



Guaranteed to find the exact NN; but how long does it take?

Exact search alg

Data structure details:

• Each rep r chosen independently w.p. p.

• Each x ∈ X assigned to nearest r.

( think of p ≈ c√
n

)



Exact search alg

Alg redux

First step has expected complexity 1/p.

Third step: want to bound |L1 ∪ · · · ∪ Lt|

• Call BF(q,R); let γ be dist to closest.

• Let r1, . . . , rt be the reps that sat ρ(q, ri) ≤ 3γ.

• Call BF(q,X[L1 ∪ · · · ∪ Lt]).



Exact search alg

Let γ = ρ(q, rq) (dist to q’s NN among R).

How many points are in B(q, γ)?

q

In expectation, about 1/p

γ



Exact search alg

q

Recall that all relevant reps r sat ρ(q, r) ≤ 3γ.

Can show that the NN of q must lie in B(q, 7γ).

γ



Exact search alg

and applying the growth rate condition,

Setting p = O(c3/2/
√

n),

the expected run time is O(c3/2√n).

get bound on |B(q, 7γ)|



One shot alg
Recall: 

q q

1. Call BF(q,R); get rq. 2. Call BF(q,X[L]).



One shot alg
Recall: 

q q

1. Call BF(q,R); get rq. 2. Call BF(q,X[L]).

nr = s = c
√

n ·
�

ln
1
δ
.

Then the one-shot alg is correct w.p. ≥ 1− δ.

Set



Experiments show two things:

Experiments on 48 cores

1. The RBC search alg reduces the work for NN 
(supports the theory)

2. It parallelizes effectively (supports the design 
choices)



Data

Name Num pts Dim
Bio 200k 74

Covertype 500k 54
Physics 100k 78
Robot 2M 21

TinyIm 10M 4-32



Exact search results

bio cov phy robot tiny4 tiny8 tiny16 tiny32
100

101

102



Actual times for 10k queries

Data Time in seconds
Bio .4s
Cov .4s
Phy .3s

Robot 1.2s
Tiny4 .7s
Tiny8 .8s

Tiny16 3.0s
Tiny32 7.5s



One-shot search

The parameter allows you to trade-off 
between speed and quality.

Error measure: rank of returned point.
e.g. rank-0 is exact NN, rank-1 is 2nd NN, ..



One-shot search results
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GPU results

Data Speedup (GPU)
Bio 38.1

Covertype 94.6
Physics 19.0
Robot 53.2

TinyIm4 188.4



Cover tree comparison

Data Cover Tree RBC
Bio 18.9 6.4
Covertype 0.4 1.1
Physics 1.9 1.7
Robot 4.6 5.1
Tiny4 0.5 1.2
Tiny8 14.6 3.3
Tiny16 178.9 25.1
Tiny32 387.0 67.9



• Simple, high performance method
• Broadly applicable
• Theoretically sound
• Good implementations available

Conclusion


