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  Introduction

  Current genotyping and automated phenotyping tech-
nologies generate massive amounts of biological data, 
making it possible to study the relationship between ge-
notype and phenotype at an unprecedented level of de-
tail. While genome-wide studies that associate single 
DNA locations with phenotypic outcomes have become 
standard, they unfortunately often fail to explain much 
of the phenotypic variation in complex diseases  [1] . It is 
widely accepted  [1]  that one step towards unveiling the 
missing heritability is to consider interactive effects, a 
phenomenon called epistasis, across the whole genome. 
Examples of phenotypes for which synergistic effects be-
tween gene loci have indeed proven a reliable predictor 
variable of the phenotypic outcome include diseases such 
as type 1 and type 2 diabetes  [2, 3] , inflammatory bowel 
disease  [4]  and hypertension  [5] . More recently, genetic 
interactions have been studied and observed in the con-
text of cancer cell proliferation. Several examples detail-
ing the different nature of genetic interactions enhancing 
or suppressing cancer mutations are listed in Ashworth 
et al.  [6] , and new therapeutic treatments have been pro-
posed to target these interactions. In addition, epistatic 
effects have also been observed in intermediate pheno-
types gained by neuroimaging such as working memory-
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  Abstract
  Due to recent advances in genotyping technologies, map-
ping phenotypes to single loci in the genome has become a 
standard technique in statistical genetics. However, one-lo-
cus mapping fails to explain much of the phenotypic vari-
ance in complex traits. Here, we present GLIDE, which maps 
phenotypes to pairs of genetic loci and systematically 
searches for the epistatic interactions expected to reveal 
part of this missing heritability. GLIDE makes use of the com-
putational power of consumer-grade graphics cards to de-
tect such interactions via linear regression. This enabled us 
to conduct a systematic two-locus mapping study on seven 
disease data sets from the Wellcome Trust Case Control Con-
sortium and on in-house hippocampal volume data in 6 h 
per data set, while current single CPU-based approaches re-
quire more than a year’s time to complete the same task.
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related brain activation  [7] . It is important to note that the 
presence of statistical epistasis can help generate new hy-
potheses but would require an in-depth investigation of 
the underlying molecular mechanisms involved to sub-
stantiate the findings.

  Unfortunately, the detection of gene-gene interactions 
in genome-wide association studies (GWAS) requires a 
massive amount of computation. In human GWAS, the 
number of single-nucleotide polymorphisms (SNPs), that 
is, single DNA base pairs where genetic variation is ob-
served, is typically in the order of 10 6 –10 7 . Hence, the num-
ber of pairs of SNPs that need to be examined can be in the 
order of 10 12 –10 14 , and data are likely to be collected on as 
many as hundreds of thousands of individuals in the larg-
est study cohorts. The software and computational strate-
gies employed for data analysis need to be redesigned to 
accommodate for such large amounts of information.

  A possible approach to alleviating the computational 
burden of epistasis detection consists of reducing the 
study to a subset of the available SNPs. One can, for ex-
ample, limit the search space to pairs of SNPs previously 
singled out by single-locus association studies  [8] . This, 
however, fails to capture high-significance pairs with low 
main effects. It is also possible to focus on SNPs belong-
ing to relevant pathways, but this does not lead to the
discovery of previously unknown biological knowledge. 
Other space-pruning methods have been recently devel-
oped but are limited to either homozygous SNPs  [9]  or 
discrete phenotypes and genotypes  [10] .

  Another strategy is to use technological advances and, 
in particular, to leverage the power of the multiple cores 
available on graphics processing units (GPUs) to dramat-
ically speed up exhaustive searches. Several software 
tools designed to perform epistasis searches on GPUs, 
such as SHEsisEpi  [11] , EPIBLASTER  [12] , EPIGPUHSIC 
 [13]  and GBOOST  [14] , have recently been proposed and 
demonstrated substantial advantages of the use of GPU 
in this application. However, they are either restricted to 
binary or discrete phenotypes, which limits the scope of 
data sets they can analyze, or neglect main effects, which 
hinders the overall interpretation of their results.

  More recently, Hemani et al.  [15]  developed a GPU-
based exhaustive search method that can be applied to 
quantitative phenotypes. Despite its alluring perfor-
mance in speed, the application of the proposed F test is 
ultimately limited to SNP-pair combinations with a 3  !  
3 contingency table of possible genotype combinations. 
In other words, information of the SNP-pair combination 
can only fall into 9 possible classes. As a result, this meth-
od is not applicable to real-number input values, such as 

in imputed genotypes. Therefore, our proposed method 
aims to be general enough to be applicable to pairwise 
epistasis studies of various real or continuous value pre-
dictor inputs (genetic and environmental factors) related 
to the phenotypic output. Furthermore, there is a need for 
the development of a new GPU-based software tool which 
not only achieves rapid computational speed but also gen-
erates a set of results that all researchers in this field can 
easily interpret.

  Here, we present GLIDE, a high-performance GPU-
based implementation of a systematic epistasis search. It 
computes the statistical scores of the intercept, univariate 
and interaction coefficients of a linear regression, ad-
dressing all the limitations of previous GPU-based meth-
ods. The implementation runs on standard GPUs, yield-
ing an inexpensive and exceptionally fast method for 
epistasis detection. While the actual computation time 
depends on the technical specifications of the computer 
used, GLIDE is consistently hundreds to thousands of 
times faster than state-of-the-art implementations on 
central processing units (CPUs). In particular, GLIDE 
makes it possible to conduct a systematic epistasis detec-
tion study on the GWAS data published by the Wellcome 
Trust Consortium  [16]  in about 6 h per data set using a 
relatively inexpensive setup of 12 GPUs. In a single-core 
CPU-based setup, a similar approach would take roughly 
1 year to complete. Although an alternative approach, 
BOOST  [17] , can be utilized to speed up the process on 
standard CPUs, it requires that phenotypic and genotyp-
ic information is in the discrete domain. By contrast, 
GLIDE’s ability to analyze imputed genotypic data and 
quantitative phenotypes enables us to search for geno-
typic interactions predicting hippocampal volume in hu-
mans, using a data set of 567 subjects and over a million 
SNPs collected at the Max Planck Institute of Psychiatry.

  Materials and Methods

  Linear Regression
  Let  X  be an  m   !   n  matrix, consisting of  m  subjects and  n  SNPs. 

Let  y  be an  m   !  1 phenotype vector. We wish to discover correla-
tions between SNP pairs and the phenotype. For each SNP pair ( i , 
 j )  D {1, ...,  n }, define the  m   !  4 matrix 
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  where  x  i  is the  i -th column of  X  (i. e., the  i- th SNP over all subjects) 
and  x  i   D��x  j  is the element-wise product of the  i -th and  j -th SNP 
columns.
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  For each SNP pair, we wish to estimate a length-four coeffi-
cient vector  !  ij  such that  X  ij   !  ij   ;   y .

  We solve this estimation problem using the standard linear 
regression formula  !  ij  = ( X  ij  !   X  ij ) –1   X  ij  !   y .

  The estimated output phenotype vector  ŷ  based on  !  ij  is then 
 ŷ  ij  =  X  ij     !  ij  with a residual sum of square error
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  To determine whether the estimated interaction term is sig-
nificantly different from zero, we perform a t test with  m  – 4 de-
grees of freedom. The t score of the interaction coefficient is given 
by: 
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  GPU Implementation
  GPUs are composed of several hundred lightweight processing 

units. These devices provide impressive computational power but 
are only effective for tasks that decompose into many subprob-
lems that can be solved in parallel. Fortunately, our problem is 
composed of many independent regression tasks, hence fits natu-
rally onto the GPU architecture.

  In the GPU programming model, each processing unit exe-
cutes a thread. These threads are grouped in blocks; within each 
block, threads can cooperate through execution synchronization 
and efficient low-latency memory sharing. Leveraging this block 
structure to reduce memory accesses is crucial for performance.

  GLIDE associates each thread with a single regression prob-
lem. These threads are then collected into blocks such that threads 
within a block can share access to a subset of the SNP-subject ma-
trix  X . In particular, each two-dimensional block of size  BS   !   BS  
loads 2  !   BS  columns of  X  and solves all pairwise linear regres-
sion problems on the corresponding  BS   !   BS  pairs of SNPs.

  GLIDE is written in the C programming language using 
NVIDIA’s CUDA extension. Further details about the GPU im-
plementation can be found in Appendix A.

  Hardware and Software Setup
  We conducted this study using 12 NVIDIA GTX 580 GPUs. 

These cards have 16 streaming multiprocessors, each holding 32 
processors, yielding a total of 512 GPU cores. They support dou-
ble-precision floating-point calculations. The host machine is 
running on an Intel Core i7 920 with a 2.66-GHz CPU host using 
12 GB of DDR3 RAM. GLIDE is compiled using the NVIDIA 
NVCC compiler along with GCC version 4.3.1.

  Results

  Performance Analysis on Synthetic Data
  We validate GLIDE and evaluate its performance on 

data simulated using a normally distributed output phe-
notype (mean 0 and standard deviation 1) and genotype 

SNP value in {0, 1, 2} encoding. The SNPs are simulated 
in Hardy-Weinberg equilibrium (p = 0.05). The number 
of individuals is set to 10,000 subjects, and 1,000 unique 
SNPs from two disjoint sets resulting in 1 million unique 
SNP pairs between the two sets are used. This is a rela-
tively small number of pairs in the GWAS context but it 
serves to demonstrate the validity of the method.

  In order to validate the implementation, we first com-
pare GLIDE to a standard multiple linear regression on 
the full-rank model (phenotype =  !  +  "  x  i  +  #  x  j  +  $  x  i  x  j ) 
computed using PLINK  [18]  (using the  –epistasis flag ). 
PLINK performs a likelihood ratio test comparing the 
regression models with and without the interaction term 
 $  x  i  x  j . The correlation coefficient between the p values 
produced by GLIDE and those returned by PLINK is ex-
actly 1, therefore satisfyingly validating the correctness 
of our implementation.

  In order to evaluate the runtime performance of 
GLIDE over a range of SNP and subject problem sizes, we 
simulate 1,000 subjects genotyped over 5,008 SNPs. The 
runtime of GLIDE depends linearly on the number of 
pairwise interactions to be tested ( fig. 1 ;  table 1 ), for an 
average speed of about 2.4  !  10 6  interactions per second 
on a single GPU.

  We then compare the speed of GLIDE with that of the 
state-of-the-art CPU methods PLINK  [18]  and FastEpis-
tasis  [19] . As the runtime of all three methods scales up 
linearly with respect to the number of pairwise SNP in-
teractions, we investigate its dependence on the number 
of subjects in the study ( fig. 2 ;  table 2 ).

  The comparison of GLIDE with PLINK reveals the ad-
vantage of porting the code onto GPUs. Although the 
performance depends on technical specifications such as 
the clock speed, number of cores, cache memory and cur-
rent load on the system, the speed-up factor of GLIDE 
over PLINK epistasis consistently remains roughly 2,000 
( fig. 2 ;  table 2 ).

  The newly released FastEpistasis method  [19]  extends 
the PLINK epistasis module to distribute the work over a 
multi-CPU environment. Its speed scales up linearly with 
the number of CPU cores used  [19] . The overall speed-up 
factor of GLIDE over FastEpistasis on a single CPU is ap-
proximately 250 ( fig. 2 ;  table 2 ), meaning that one would 
need to use a cluster of 250 CPUs to compute epistatic in-
teractions with FastEpistasis in the same amount of time 
as required by GLIDE on a single desktop GPU.

  Wellcome Trust Case-Control Consortium
  In order to test GLIDE on real data, we carried out an 

epistatic interaction detection study on seven data sets for 
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common human diseases [bipolar disorder, coronary ar-
tery disease, Crohn’s disease, hypertension, rheumatoid 
arthritis (RA), type 1 diabetes (T1D) and type 2 diabetes] 
from the Wellcome Trust Case-Control Consortium 
(WTCCC). Each data set retrieved from the European 
Genome-phenome Archive (EGA) contains 500,000 
SNPs and 5,000 subjects (divided into 2,000 cases and 
3,000 controls). We applied the same quality control pro-
cedure as described in the original single-locus associa-
tion study of these sets  [16] .

  Using 0.4  !   n ( n  – 1)/2 (where  n  is the number of SNPs) 
as correction for multiple hypothesis testing  [20]  and a 

significance level of 0.05, we only detected significant in-
teractions for the T1D and the RA data sets.

  The original GWAS conducted by the WTCCC  [16]  
has shown strong single-locus associations between both 
RA and T1D and the human leukocyte antigen (HLA) 
complex, the most important region of the human ge-
nome with respect to infection as well as in"ammatory 
and autoimmune responses  [21] .

  The 170 significant interactions identified by GLIDE 
for RA and the 3,945 significant interactions detected for 
T1D all take place between SNPs belonging to this region. 
While these results may in part be due to the nature of 
genetic variation in the HLA system, they support the 
hypothesis that the influence of this system on both clin-
ical conditions is by far not univariate but interactive. For 
RA, all of those interactions involve SNPs that have sig-
nificant individual effects and belong to the MHC class 
II (32.3–33.4 Mb) region, which is consistent with previ-
ously reported results  [17] . For T1D, 531 of the interac-
tions identified by GLIDE are between SNPs with non-
significant individual effects. Most of these interacting 
pairs reveal interactions between the MHC class I (29.8–
31.6 Mb) and MHC class II (32.3–33.4 Mb) regions, which 
corroborates the hypothesis  [22]  that genes from both re-
gions should be considered to better understand T1D sus-
ceptibility.
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  Fig. 1.  Runtime of GLIDE, in seconds, as a function of the number 
of SNP pairs tested. 
 

  Table 1.  GLIDE speed performance against number of pairwise 
interactions for 1,000 subjects (in number of interactions per sec-
ond) over 10 runs

 Number of interactions  Average speed  SD 

 130,816  2,396,483  1,653 
 507,528  2,415,026  599 
 1,130,256  2,420,631  1,268 
 1,999,000  2,421,278  477 
 4,522,528  2,421,397  464 
 12,537,528  2,421,947  202 
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  Fig. 2.  Speed (thousands of interactions per second) of GLIDE, 
FastEpistasis (single CPU core), and PLINK as a function of the 
number of subjects, displayed on a logarithmic scale. 
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  Overall, these results match those previously reported 
by Wan et al.  [17]  on the WTCCC data sets, where sig-
nificant interactions between SNPs that are not in link-
age disequilibrium nor individually associated with the 
phenotype were identified only for T1D. The authors ad-
ditionally report one pair in Crohn’s disease, which so far 
has not been linked to any biological effects. Moreover, 
this pair was then tested with PLINK and did not pass the 
corrected significance threshold (Weichuan Yu, pers. 
commun., June 1, 2011), which is consistent with the fact 
that it is not picked up by GLIDE in this study.

  The physical annotations of the top 10 SNP pair results 
for the seven data sets are listed in  tables 3–9 .

  Hippocampal Volume
  Finally, we conducted an exhaustive search for epistat-

ic interactions associated with hippocampal volume, 
making full use of GLIDE’s ability to handle a quantita-
tive phenotype. The hippocampus is a small but complex 
bilateral brain structure involved in many cognitive pro-
cesses, particularly the formation of new memories. An 
extreme reduction of its volume is a hallmark of Alzhei-
mer’s disease, but mild forms of hippocampal volume re-
ductions are also found in patients with schizophrenia or 
recurrent depression  [23] . The hippocampal volume is 
heritable to some degree, with the heritability estimated 
from twin studies to be between 40 and 69%  [24] , and is 
therefore a good candidate for explicit genetic studies. 

  Table 2.   Compared speeds (in number of interactions per second) of GLIDE, PLINK and FastEpistasis across 
the number of subjects

 Number of
  subjects 

 GLIDE
  speed 

 PLINK
  speed 

 Speed-up
  factor 

 FastEpistasis
  single-core speed 

 Speed-up
  factor 

 60  23,838,755  21,728  1,097  88,950  268 
 100  17,388,205  13,979  1,244  62,500  278 
 171  11,683,130  4,750  2,460  46,875  249 
 500  4,651,763  2,140  2,176  20,833  223 
 1,000  2,421,486  1,240  1,960  8,929  272 
 2,000  1,263,967  520  2,419  4,808  263 
 3,000  839,381  484  1,734  3,472  242 
 5,000  509,444  220  2,292  1,894  269 
 8,000  321,630  140  2,285  1,268  254 
 10,000  255,989  111  2,306  933  274 

 T he performance we observe for FastEpistasis is 2–3 times slower than reported by Schüpbach et al. [19], 
which is perhaps due to di#erences in hardware, libraries, and total problem size; regardless, GLIDE is about 
100 times faster than the single-CPU FastEpistasis. 

 
 

  Table 3.   Physical annotation of the 10 most significant SNP pairs for bipolar disorder in WTCCC data

 SNP1  Chr  Position  SNP2  Chr  Position  p value 

 rs17025231  2  101135181  rs4969204  17  74109571  5.25  !  10–11 

 rs8105122  19  15950378  rs17689617  7  40787764  9.68  !  10–11 

 rs4763208  12  10646155  rs17072179  13  48220858  1.96  !  10–10 

 rs6798573  3  21761897  rs4877750  9  83102218  2.33  !  10–10 

 rs4851400  2  101155167  rs4969204  17  74109571  2.65  !  10–10 

 rs1086157  12  105191043  rs2150425  21  41453629  2.88  !  10–10 

 rs1109775  4  102939056  rs4713011  6  26771329  3.07  !  10–10 

 rs1125524  10  7700472  rs1943720  11  84282001  3.16  !  10–10 

 rs1488  6  161508661  rs12814794  12  26331965  3.12  !  10–10 

 rs1125524  10  7700496  rs1943720  11  84282001  3.33  !  10–10 
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Here, we performed a genome-wide interaction analysis 
on hippocampal volume automatically determined from 
high-resolution MRI, with raw volumes corrected for un-
specific sources of variance. The bilateral hippocampal 
volume of 567 subjects was automatically extracted by a 
method that combines cytoarchitectonic probability 
maps with optimized segmentation and intersubject 
coregistration of high-resolution structural MR images, 
similar to a recent report  [25] . Further details on the 
study sample and phenotype extraction can be found in 
Appendix B.

  Genotypic data were collected using the Illumina 
650K chip. We imputed missing genotypic data using 
MACH  [26]  on a reference panel Hapmap 3 CEU popula-
tion sample, as described in detail in Stein et al.  [27] , and 
filtered out SNPs with a minor allele frequency (MAF) 
lower than 5%. We thus obtained a total of 1,075,163 
SNPs. The standard single-locus SNP correlation study 

was carried out first. The top 20 univariate SNP findings 
are shown in  table 10 . The lowest p value observed in the 
univariate GWAS is 2.5  !  10 –7 , which is above the criti-
cal threshold of the whole genome-wide significance. Of 
the 20 SNPs with strongest univariate associations, 7 
were attributable to the adenosine 3 receptor (ADORA3), 
a G protein-coupled receptor involved in many intracel-
lular signaling pathways. Of particular interest in the 
context of hippocampal morphology are animal experi-
ments demonstrating a role of ADORA3 in protecting 
hippocampal pyramidal cells against hypoxia  [28] . Seven 
additional SNPs were assignable to the potassium-de-
pendent sodium/calcium exchanger SLC24A3, which is 
highly expressed in thalamic nuclei, hippocampal CA1 
neurons, and layer IV of the cerebral cortex, and to
SLC6A11, a transporter of the gamma-amino-butyric 
acid transporter expressed in the hippocampus and in-
volved in brain maturation  [29] . All SNPs detected from 

  Table 4.   Physical annotation of the 10 most significant SNP pairs for RA in WTCCC data

 SNP1  Chr  Position  SNP2  Chr  Position  p value 

 rs9268877  6  32539125  rs9268645  6  32516505  2.47  !  10–32 

 rs9268877  6  32539125  rs3129872  6  32515131  1.24  !  10–26 

 rs9268877  6  32539125  rs3135342  6  32504593  1.46  !  10–26 

 rs9268877  6  32539125  rs5000563  6  32512113  2.11  !  10–26 

 rs9268877  6  32539125  rs3129877  6  32516575  4.63  !  10–26 

 rs9275134  6  32758590  rs9273363  6  32734250  6.32  !  10–26 

 rs9268877  6  32539125  rs9268831  6  32535726  2.08  !  10–22 

 rs539703  6  32396440  rs3134926  6  32308125  2.47  !  10–21 

 rs3134926  6  32308125  rs4959093  6  32421075  2.63  !  10–21 

 rs574710  6  32396168  rs3134926  6  32308125  1.31  !  10–20 

 
 

  Table 5.   Physical annotation of the 10 most significant SNP pairs for coronary artery disease in WTCCC data

 SNP1  Chr  Position  SNP2  Chr  Position  p value 

 rs11170276  12  51465940  rs273763  18  21451629  4.07  !  10–11 

 rs10876341  12  51454429  rs273763  18  21451629  1.39  !  10–10 

 rs2449393  6  149306948  rs17679635  11  33161304  1.93  !  10–10 

 rs13158763  5  16146630  rs10759217  9  107079850  3.39  !  10–10 

 rs4148202  2  43979470  rs7956731  12  124806808  3.56  !  10–10 

 rs12498185  4  117953156  rs2928579  8  6597571  3.85  !  10–10 

 rs2619283  3  103373585  rs1423977  16  57946190  4.03  !  10–10 

 rs6427623  1  158434421  rs9591697  13  55368450  4.13  !  10–10 

 rs7712927  5  10638111  rs12673840  7  102166072  4.79  !  10–10 

 rs810517  10  80612626  rs11643947  16  5381126  5.00  !  10–10 

 
 



 Kam-Thong et al. Hum Hered 2012;73:220–236226

the univariate tests were non-hypothesized and have not 
been directly associated with hippocampal volume in the 
current literature. Still, the close relationship of the as-
signed genes with hippocampal physiology provides 
some first validation by external knowledge.

  An exhaustive pairwise test was then performed using 
GLIDE. The 20 SNP pairs showing the strongest interac-
tions are listed in  table 11 , and the associated genes (with-
in  8 100 kbp) are also reported in  table 11 . Comparing 
 tables 11  and  10 , it can be noted that none of the topmost 
significant univariate SNPs are involved in the top 20 sig-
nificant interaction pairs. In other words, all of the most 
significant pairs would not have been detected if we had 
first pruned the SNP space based on the univariate tests. 
In fact, the highest ranked univariate SNP present in  ta-
ble 11  is rs4072698 at a ranking of 54,422 with a univari-
ate p value of 0.052, which is genome-wide insignificant. 
Furthermore, the p values of the univariate test on the 

individual loci for the 2 SNPs involved in the top SNP 
pair, rs10932029 and rs12186557, are also insignificant 
with 0.23 and 0.89, respectively. This was previously ex-
plored by Kam-Thong et al.  [12, 13]  who showed a poor 
correlation between the single-locus significance and the 
two-loci interaction significance. This further stresses 
the need to adopt an exhaustive search method as op-
posed to filtering by univariate significance, which will 
omit significant interactive pairs with low marginal ef-
fects.

  The two most significant pairs (p = 2.6  !  10 –13  and
p = 2.7  !  10 –13 ) involve a SNP located in a gene desert of 
chromosome 5 (rs12186557), paired with either a SNP be-
longing to the ICOS [inducible (T-cell) costimulator] 
gene or a SNP located 8 kbp upstream of the CTLA4 (cy-
totoxic T-lymphocyte-associated protein 4) gene. While 
the role of rs12186557 remains unknown, both the ICOS 
and CTLA4 genes are involved in the regulation of the 

  Table 6.   Physical annotation of the 10 most significant SNP pairs for hypertension in WTCCC data

 SNP1  Chr  Position  SNP2  Chr  Position  p value 

 rs16852030  1  159992502  rs10019154  4  114486799  2.37  !  10–11 

 rs9521017  13  108217160  rs17358595  20  15066948  3.36  !  10–11 

 rs9521017  13  108217160  rs17292844  20  15067797  3.52  !  10–11 

 rs10112307  8  135933661  rs12883378  14  28893882  1.03  !  10–10 

 rs9925302  16  85223804  rs1440843  18  25674847  1.04  !  10–10 

 rs731589  8  135929583  rs12883378  14  28893882  1.35  !  10–10 

 rs10024138  4  141121952  rs16905671  10  55615237  1.35  !  10–10 

 rs731589  8  135929583  rs1018542  14  28922805  1.43  !  10–10 

 rs9521036  13  108227221  rs17358595  20  15066948  1.44  !  10–10 

 rs9521036  13  108227221  rs17292844  20  15067797  1.50  !  10–10 

 
 

  Table 7.   Physical annotation of the 10 most significant SNP pairs for Crohn’s disease in WTCCC data

 SNP1  Chr  Position  SNP2  Chr  Position  p value 

 rs10809018  9  10025658  rs16907121  9  23331848  7.70  !  10–12 

 rs16907121  9  23331848  rs10809018  9  10025658  7.70  !  10–12 

 rs10887096  10  123916300  rs7318474  13  28027431  1.02  !  10–11 

 rs515309  2  174298192  rs2496731  10  34995393  6.48  !  10–11 

 rs4693426  4  83451117  rs954359  7  152175381  8.99  !  10–11 

 rs6818493  4  83468865  rs954359  7  152175381  8.99  !  10–11 

 rs515309  2  174298192  rs2476995  10  34995323  9.44  !  10–11 

 rs6819282  4  83469210  rs954359  7  152175381  1.03  !  10–10 

 rs4693427  4  83452184  rs954359  7  152175381  1.06  !  10–10 

 rs6554056  4  53562394  rs2609850  22  33175931  1.55  !  10–10 
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adaptive immune system, particularly the development 
of T-cell functionality and the secretion of different in-
terleukins. Notably, T-cells and in"ammatory cytokines 
have been implicated in neurogenesis and neural plastic-
ity, as demonstrated for hippocampus-dependent tasks in 
animal models  [30, 31] .

  Genes even more directly linked to brain develop-
ment appear among the other top significant pairs we 
report. Gene ZEB2 is particularly interesting as it en-
codes the zinc finger E-box-binding homeobox 2 pro-
tein, which interacts with SMADs, small intracellular 
signal integrators that act in the transforming growth 
factor beta signaling pathway. This pathway plays a role 
for embryonic development in terms of cell differentia-
tion, cell growth, and apoptosis  [32] . Furthermore, it is a 
key modulator of the Wnt pathway, which regulates hip-
pocampal development  [33] , and a candidate gene study 
using voxel-based morphometry has associated SNPs in 

ZEB2 with right temporolateral and hippocampal cortex 
volume  [34] ; in addition, temporal lobe abnormalities 
have been reported in ZEB2 mutations  [35] . Further sig-
nificant interactions were detected for pairs in KIAA1804 
[also referred to as mixed linkage kinase 4 (MLK4)]
and ZPLD1 (zona pellucida-like domain containing 1). 
ZPLD1 has been linked to the occurrence of cerebral cav-
ernous malformations  [36] , but there is limited knowl-
edge on the functionality of MLK4. In addition, three 
pairs involve TRPM6, a gene encoding a cation channel 
and expressed in the brain  [37] . Two other pairs involve 
a SNP in protocadherin 8 (PCDH8), which plays a role in 
cell adhesion in a way specific to the central nervous sys-
tem  [38] .

  Furthermore, standard statistical genetics analyses 
were performed in view of substantiating these findings. 
First, taking a closer look on these top pairs reveals that 
in fact several pairs have a common SNP member, while 

  Table 8.   Physical annotation of the 10 most significant SNP pairs for T1D in WTCCC data

 SNP1  Chr  Position  SNP2  Chr  Position  p value 

 rs2240063  6  31222724  rs7194  6  32520458  8.34  !  10–25 

 rs3130558  6  31205162  rs2647046  6  32776314  9.47  !  10–25 

 rs3130981  6  31191792  rs2647046  6  32776314  2.70  !  10–24 

 rs2905747  6  31559455  rs9275572  6  32786977  4.70  !  10–24 

 rs3131009  6  31206811  rs2647046   6  32776314  5.55  !  10–24 

 rs3130531  6  31314595  rs6936204  6  32325070  1.59  !  10–21 

 rs3099849  6  31459394  rs9275572  6  32786977  2.46  !  10–21 

 rs3099849  6  31459394  rs2647046  6  32776314  4.09  !  10–21 

 rs2523693  6  31526103  rs9268831  6  32535726  4.99  !  10–20 

 rs2106074  6  31241488  rs9275572  6  32786977  6.89  !  10–20 

 
 

  Table 9.   Physical annotation of the 10 most significant SNP pairs for type 2 diabetes in WTCCC data

 SNP1  Chr  Position  SNP2  Chr  Position  p value 

 rs10916293  1  224738665  rs9314349  8  27530121  2.48  !  10–11 

 rs2469354  8  3440295  rs10419469  19  41826577  4.23  !  10–11 

 rs2424475  20  22714828  rs1586789  8  126966068  4.84  !  10–11 

 rs2469354  8  3440295  rs10424565  19  41730256  1.15  !  10–10 

 rs287613  1  224793519  rs9314349  8  27530121  1.23  !  10–10 

 rs10792093  11  56910524  rs12157271  2  116666722  1.57  !  10–10 

 rs12134582  1  17138286  rs17651062  6  161931245  2.18  !  10–10 

 rs6549596  3  74590400  rs9711171  2  239513858  2.45  !  10–10 

 rs10896615  11  56920856  rs12157271  2  116666722  2.48  !  10–10 

 rs6961889  7  109923606  rs5771883  22  47367340  2.54  !  10–10 
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the complementary SNPs are in close physical proxim-
ity and most likely in linkage equilibrium. Such is the 
case for the top two SNP pairs: rs12186557 is the com-
mon SNP, and rs10932029/rs11571300 are in close prox-
imity. This is, in fact, catching the same effect. In ad-
dition, two pairs can involve 4 unique SNPs, but when 
both SNPs are in close proximity to the SNPs in anoth-
er pair, this is also a redundant observation. Such is
the case for SNP pairs rs12614080/rs17060595 and 
rs13392477/rs1333343. As a result, if one filters out re-
dundant observations from the top 20 pairs, only 8 pairs 
are truly unique. Constructing a model with all 8 unique 
top pairs (italic type in  table 11 ) to analyze their effects 
jointly reveals that the p values of the individual SNP 
pairs are robust, and the fraction of variance that is ex-
plained by this joint model containing these 8 pairs is 
approximately 0.40.

  Constructing a Q-Q plot across all test scores to search 
is practically infeasible for the total amount of SNP pairs 
involved. Instead, a Q-Q plot of stratified sampling of the 
top 510,220 (or top 8.8  !  10 –5 %) observed –log 10  p value 

pairs, and a subset of 500,000 randomly chosen pairs 
from the remaining lower ranked pairs (or bottom 
99.999912%) against a standard normal distribution is 
constructed.  Figure 3  shows no deviation from the unit 
slope nor unbiased amount of clustering in the upper 
quantiles, thus indicating that the significant findings are 
not due to any skewness of the distribution from normal-
ity and are as expected.

  Finally, it is important to develop a three-dimension-
al map to visually illustrate the effects of the genotypic 
interactions with respect to the phenotype. As real val-
ued variables are used in both the genotype and pheno-
type, a tailored plot is constructed. To this end, a plot 
containing the raw data points is shown in  figure 4  for 
the very top SNP pair finding. A density plot of the data 
points is also shown on the SNP-SNP plane. In addition, 
to investigate the improvement on the quality of the fit 
due to the interaction term, the fitted plane based on just 
the linear combination of the two SNP models is plotted 
as a blue grid (color refer to online version only). More-
over, the fitted surface taking the interaction term into 
account is also shown in yellow. Comparing the scatter-
ness of the raw data points to the plane reveals that the 
overall behavior and many of the local undulations of the 
data points cannot be captured by a simple "at surface. 
A resulting fitted surface from the model embedding the 
interaction term proves to be a better fit to the behavior 
of the data points, as illustrated. In addition, by rounding 
the imputed genotype data to the nearest integer, 3  !  3 
tables for the number of subjects and phenotypic means 
in each cell are shown in  tables 12  and  13 , respectively. It 
can be shown that the result obtained is in part driven by 
a small number of outliers at the extreme points.

  Discussion

  One step towards revealing the missing heritability in 
complex traits is to search for epistatic effects and to map 
phenotypic variation to pairs of genetic loci. We imple-
mented a fast two-locus genome-wide interaction detec-
tion algorithm, which performs an exhaustive SNP-SNP 
interaction search on typically sized large-scale studies in 
6 h on relatively inexpensive GPUs. Unlike other available 
GPU-based search methods  [11–15] , GLIDE can be ap-
plied to quantitative phenotypes and real-valued geno-
types. The ability to work with real-valued numbers 
opens new opportunities to analyze interactions with 
other sources of predictor variables such as environmen-
tal factors. In large cohort studies where data collection 

  Table 10.   The 20 most significant univariate SNPs for hippocam-
pal volumetry

 SNP  Position 
chr:kbp 

 Gene  Distance 
kbp 

 p value 

 rs4838917  1:111915  ADORA3  –7  2.05  !  10–7 

 rs2364815  1:111907  ADORA3 0  2.06  !  10–7 

 rs17663802  1:111910  ADORA3  –2  5.03  !  10–7 

 rs10776733  1:111909  ADORA3  –1  6.00  !  10–7 

 rs10857896  1:111915  ADORA3  –7  1.20  !  10–6 

 rs1905755  3:10810  SLC6A11  –22  2.05  !  10–6 

 rs1905752  3:10808  SLC6A11  –24  2.05  !  10–6 

 rs10857898  1:111922  ADORA3  –14  2.15  !  10–6 

 rs12566794  1:111923  ADORA3  –15  2.25  !  10–6 

 rs6035224  20:19043  SLC24A3  –97  2.41  !  10–6 

 rs1033814  20:19049  SLC24A3  –91  4.62  !  10–6 

 rs6045840  20:19045  SLC24A3  –95  5.60  !  10–6 

 rs6045843  20:19046  SLC24A3  –94  5.68  !  10–6 

 rs12619086  2:15098  5.71  !  10–6 

 rs2208796  20:19048  SLC24A3  –92  5.71  !  10–6 

 rs4668855  2:15100  5.72  !  10–6 

 rs6431665  2:15100  5.72  !  10–6 

 rs6711699  2:15096  5.72  !  10–6 

 rs12619056  2:15098  5.73  !  10–6 

 rs4668858  2:15100  5.75  !  10–6 

 C oordinates are reported using the hg18 genome map. In the 
distance column, ‘–’ indicates upstream of the gene and a distance 
of 0 means in the gene. No gene name means no gene was found 
within 100 kbp of the SNP. 
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  Fig. 4.  Genotype-phenotype map for the top pair in the hippo-
campal volume study. Raw data points (red/blue spheres) with 
corresponding density plot (bottom), fitted plane from additive 
univariate model (blue grid), and fitted surface from the interac-
tion model (yellow) (colors refer to online version only).

  Fig. 3.  Q-Q plot of stratified sampling of the hippocampal volume 
study. Top 510,220 (or 8.8  !  10 –5 %) observed –log 10  p value pairs 
in black, subset of points from the remaining lower ranked pairs 
in red, unit slope line in cyan, and top 20 pairs presented in table 8 
in blue (colors refer to online version only). 

  Table 11.   Physical annotation of the 20 most significant SNP pairs 
for hippocampal volume

SNP Position 
chr:kbp

Gene Distance 
kbp

p value

 rs10932029 2:204510 ICOS 0 2.60  !  10–13
 rs12186557 5:104962

rs11571300 2:204455 CTLA4 +8 2.69  !  10–13
rs12186557 5:104962

 rs1294230 1:231586 KIAA1804 +1
7.77  !  10–12

 rs2063640 3:103686 ZPLD1 +2

rs1294229 1:231587 KIAA1804 +2
7.80  !  10–12

rs2063640 3:103686 ZPLD1 +2

rs1294228 1:231586 KIAA1804 +1
7.82  !  10–12

rs2063640 3:103686 ZPLD1 +2

rs1294226 1:231587 KIAA1804 +1
8.03  !  10–12

rs2063640 3:103686 ZPLD1 +2

rs1294205 1:231591 KIAA1804 +5
8.37  !  10–12

rs2063640 3:103686 ZPLD1 +2

rs1294200 1:231591 KIAA1804 +5
8.45  !  10–12

rs2063640 3:103686 ZPLD1 +2

rs1294233 1:231585 KIAA1804 +1
8.50  !  10–12

rs2063640 3:103686 ZPLD1 +2

rs1294198 1:231592 KIAA1804 +6
8.59  !  10–12

rs2063640 3:103686 ZPLD1 +2

 rs6746122 2:145034 ZEB2 –40
1.13  !  10–11

 rs4072698 3:103686 ZPLD1 +4

 rs13392477 2:136829
TRPM6 0 1.42  !  10–11

 rs17060595 9:76673

rs12614080 2:136836
TRPM6 0 1.52  !  10–11

rs17060595 9:76673

 rs4854951 3:180919 USP13 0
1.55  !  10–11

 rs16970848 16:20998 DNAH3 0

rs4854951 3:180919 USP13 0
1.56  !  10–11

rs16970847 16:20997 DNAH3 0

 rs2254788 12:94259 VEZT +41
1.62  !  10–11

 rs9568763 13:52278 PCDH8 +37

 rs13170855 5:146655 STK32A 0 
1.97  !  10–11

 rs4731513 7:128167 CALU 0

rs2658679 12:94252 VEZT +34
2.03  !  10–11

rs9568763 13:52278 PCDH8 +37

rs13392477 2:136829
TRPM6 0 2.50  !  10–11

rs1333343 9:76692

 rs11857420 15:94607
2.52  !  10–11

 rs7205063 16:85539

C oordinates are reported using the hg18 genome map. In the distance 
column, ‘–’ indicates upstream of the gene, ‘+’ downstream of the gene, and 
a distance of 0 means in the gene. No gene name means no gene was found 
within 100 kbp of the SNP. SNP pairs in italic type indicates non-redundant 
pairs.
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is done across heterogeneous platforms, the ability to 
work with imputed genotype data is crucial. In turn, the 
larger sample size will help improve the power. Further-
more, the proposed method generates easily interpretable 
test statistics for researchers to work with.

  GLIDE implements the same algorithm as PLINK 
epistasis analysis and is faster by a factor of 2,000. Even 
the optimized multicore version of PLINK, FastEpistasis, 
requires roughly 250 CPU cores to run as fast as GLIDE 
on a single GPU. A GPU can be housed in a basic desktop 
computer; in contrast, 250 CPU cores require a computer 
cluster, along with the significant space, power, and man-
agement costs that accompany it. Indeed, the costs of the 
CPU processors alone dwarf the cost of a GPU by an order 
of magnitude. The significant benefits of the GPU setup 
render it possible to routinely perform exhaustive two-
locus GWAS.

  It is important to note that, under certain conditions, 
the algorithm developed in BOOST  [17]  using Boolean 
representation of the genotype data which in turn allows 
for quick Boolean operations has a performance advan-
tage over our proposed method. The BOOST algorithm 
has overcome the problem of non-closed form solution 
for the test of interaction in the logistic regression model 
by first implementing a screening stage where the Kirk-
wood superposition  [17]  was used as an approximation.

  At 5,000 subjects, the single-CPU core BOOST solu-
tion alone is approximately 1.9 times faster than GLIDE. 
The extension of this method to GPUs as described in 
Yung et al.  [14]  is approximately 75 times faster than 
GLIDE. However, GLIDE can be substituted or comple-
mented by GBOOST if, and only if, both the phenotype 
and the genotype data are in the discrete domain. In oth-
er words, the phenotype must be of dichotomous nature 
and the genotype must be non-imputed for GBOOST to 
be applicable and for its speedup to be exemplified. GLIDE 
overcomes these limitations by extending the tool to be 
versatile enough to solve a general linear regression. In 

addition, GLIDE can be used to solve for linear regression 
when a dichotomous phenotype is under investigation, as 
shown in the WTCCC results. This is performed by first 
transforming the case-control phenotype with the loga-
rithm of the odds ratio between the two classes, the logit 
transformation. As the genotype is imputed, information 
for all subjects is present for all SNPs, thus the odds ratios 
do not vary from one SNP pair to another. Although there 
are merits in adopting the logistic regression, results ob-
tained from the suggested linear regression approach have 
been shown in the literature  [39, 40]  to be asymptotically 
similar to those obtained with the logistic regression ap-
proach when the sample size is large enough for the re-
siduals to be normally distributed. In addition, the maxi-
mum likelihood approach corresponds to the least squares 
approach when the residuals are normally distributed. 
Thus, as the conditions are met in our study, the measured 
statistical scores for the interaction coefficient using the 
linear regression approach with the logit has been adopted 
for dichotomous phenotype WTCCC data sets.

  A crucial feature of GLIDE is that it can directly be ap-
plied to continuous phenotypes. As an illustration of this 
new opportunity, we explored the whole genome for
epistatic effects on the hippocampal volume in humans, 
detecting two promising interactions that involved the 
ICOS gene (known to play an important role in cell-cell 
signaling, immune responses, and cell proliferation regu-
lation) or the CTLA4 gene (also involved in the immune 
response and linked to autoimmune disorders). These 
findings are striking in the light of accumulating evi-
dence for the impact of immune processes on neuroplas-
ticity  [30] . The interacting SNP we identified in both cas-
es, rs12186557, does not, to current knowledge, belong to 
a known gene; its closest gene, located about 600 kbp up-
stream, is the pseudogene RAB9BP1. Such result pattern 
is not unusual in hypothesis-free genetic association 
studies, with a more recent example being a whole-ge-
nome association study on major depressive disorder that 

  Table 12.  G enotype-phenotype map for the top pair in the hip-
pocampal volume study

 rs12186557 

 rs10932029 
 288  112  6 
 110 34  3 

12 1  1 

 Subject distribution across binned 3 ! 3 genotype table. 

 
 

  Table 13.  G enotype-phenotype map for the top pair in the hip-
pocampal volume study

 rs12186557 

 rs10932029 
 –0.182 0.066 0.183 

0.030  –0.130  –0.578 
0.108  –0.705  –1 

 Mean hippocampal volume distribution across binned 3 ! 3 
genotype table. 
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revealed polymorphisms not mapping to any annotated 
gene but with functional relevance  [25] .

  Most notably, the other SNP interactions we detected 
displaying interactive effects point to genes for which 
functionality in brain development is highly plausible, 
such as ZEB2, which is part of the Wnt signaling pathway 
in development and was already previously detected in a 
morphology study performed on a subsample of the data 
set used here  [34] , and PCDH8, which is known to play a 
role in cell adhesion, in particular for the central nervous 
system  [38] .

  These results illustrate how GLIDE can be used to ef-
ficiently perform an epistatic search on continuous phe-
notypes; further analysis must be conducted to explore 
their biological implications. Following conventional us-
age, we defined the phenotype as the whole hippocampal 
volume; however, using the separate cytoarchitectonic 
subregions could lead to even stronger and more diverse 
results as it is likely that the development of different sub-
regions depends on distinct genetic processes. In addi-
tion, GLIDE could be used to investigate brain regions 
with higher heritability measures than the hippocampus, 
such as those determined from twin studies  [24] .

  As exhaustive epistatic search involves testing 10 12 –
10 14  hypotheses on the same data set, further develop-
ments will include addressing multiple hypothesis test - 
ing correction. The traditional Bonferroni correction is 
known to be overly conservative as linkage disequilibri-
um between nearby markers leads to mutually correlated 
variables. Modifications of this correction have therefore 
been proposed  [20] . Permutation-based statistical tests 
 [10]  are, however, more promising; yet, such approaches 
are computationally burdensome, and we plan to investi-
gate the design of GPU-based implementations that will 
speed them up.

  Appendix A: GPU Implementation Details

  The GLIDE implementation is based on a natural mapping be-
tween the required output – all pairwise regression coefficients –
and the GPU processing elements, termed thread processors. The 
exact organization of the computation is crucial to the perfor-
mance of the implementation. In this appendix, we provide an 
overview of the implementation details.

  Principles of GPU Implementation
  The GPU hardware consists of a memory bank and a large pool 

of grouped processing elements. The CUDA programming inter-
face exposes this organization; the processing elements corre-
spond to threads and the groups correspond to blocks. Threads 
within the same block share a small amount of very fast on-chip 
memory, and all threads can access the main memory bank. Ac-

cess to the main memory bank is slow, relative to the throughput 
of the processing elements, and hence is often a bottleneck in GPU 
implementations. To avoid this bottleneck, efficient implementa-
tions make use of the on-chip memory to reduce main memory 
traffic.

  Organization of the Computation
  Recall the problem: there are  n  SNPs and the algorithm must 

compute
  
  ( )1

2
n n-  

  coefficient vectors  !  ij . The calculation of pairwise epistatic SNP 
interactions between  n  SNPs corresponds to filling an upper tri-
angular matrix, as illustrated by the grey area in  figure 5 .

  Each thread is responsible for the calculation of a single coef-
ficient vector  !  ij . The threads are indexed using the same ( i ,  j ) in-
dices as the coefficient vectors. The threads ( i ,  j ) must access the 
 i- th and  j- th SNPs from the GPU memory. Notice, however, that 
any two threads sharing an index must access the same SNP. 
Hence, if the threads are grouped into blocks such that many 
threads within a block share an index, SNPs loaded from the 
memory can be shared between threads.

  Define the blocks to be of size  BS   !   BS ; each block computes 
a consecutive series of  !  ij s. For example, the first block computes 
 !  11 , ...,  !  BSBS . Notice that within this block, each SNP vector is used 
for the calculation of (at least)  BS  coefficients, which is the re-use 
behavior we were after. We describe the block-level computations 
in more detail in the following subsection.

  The implementation creates a grid of 
  
  

n n
BS BS
´

  blocks (we assume that  n  is a multiple of  BS  for simplicity), which 
can be executed independently of one another. In many cases, the 
SNP matrix will be too large to fit into the memory of the GPU. 
In this case, two chunks of size  m   !   n  GPU  of the SNP matrix  X  are 
moved to the GPU, and the coefficients for the  n  GPU   !   n  GPU  cor-
responding SNP pairs are computed. Next, a different pair of 
chunks is moved to the GPU and the corresponding coefficients 
are computed, and so on, until the coefficients for all pairs of SNPs 
have been computed.

   Figure 5  summarizes the principle behind CUDA GPU threads 
cooperation.

  Block-Level Computations
  To keep notation simple, we describe the block-level computa-

tions for a particular block; other blocks are similar. To evaluate 
the interactions between  BS  SNPs from  Set 1 (indexed by 1, …,  BS ) 
and  BS  SNPs from  Set 2 (indexed by  x  BS  +1, ..., 2  BS ), a block computes 
the matrix  A  1,2  defined as:
  
  

1,2 2 2 2 2
1 1 2 1 1 2

... ... ... ...

... ... ... ... 1 .

... ... ... ...
BS BS BS BS BS BSA x x x x x x x x y+ +

é ùµ µ µ µ µ µ µ µ µ µê ú
ê ú= ê ú
ê úµ µ µ µ µ µ µ µ µ µê úë û

     
(4)

   A  1,2  is of dimension  p   !  (4 BS  + 2), where  p  is the number of sub-
jects chosen to be small enough that all their genotypic informa-
tion can be read at once. It is stored in the shared memory, which 
is accessible by all threads within the same block.
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  Next, the block computes and stores in the shared memory the 
correlation matrix  T  =  A  1,2!   A  1,2  of dimension (4 BS  + 2)  !  (4 BS  
+ 2). This step is implemented as a standard matrix-matrix mul-
tiplication on the GPU.  T  contains all elements necessary to re-
trieve the correlation matrix  X  ij  !   X  ij  for every pair of SNPs in  Set 1 
 !   Set 2. Indeed,  X  ij  !   X  ij  can be written as: 

  
  ( )

( )
( )

( ) ( ) ( ) ( ) ( )

1 1 1

1

1

1

i j i j

i i j i j i i jij ij

j j i j j j i j

i j i j i i j j j j i j

m x x x x

x x x x x x x x
X X

x x x x x x x x

x x x x x x x x x x x x

é ù¸ ¸ ¸ê ú
ê ú¸ ¸ ¸ ¸ê ú
ê ú= ê ú¸ ¸ ¸ ¸ê ú
ê ú¸ ¸ ¸ ¸ê úë û

D

D

D

D D D D D

!

  

(5)

  Computing  X  ij  !   X  ij  in this manner ensures that all threads are 
kept busy and maximizes the efficiency of the method.

  Once  T  has been computed, each of the  BS   !   BS  threads  i ,  j  
finishes the procedure by computing the regression coefficients 
for one pair of SNPs indexed by  i   D {1, …,  BS },  j   D { BS  + 1, ..., 2 BS } 
as well as the corresponding statistical tests. Each matrix  X  ij  !   X  ij  
is of fixed dimension 4  !  4 and can therefore be inverted ana-

lytically. The estimated mean regression coefficients are then tab-
ulated from ( X  ij  !   X  ij ) –1   X  ij  !   y . The estimated phenotype  ŷ  ij  is then 
computed, and the variance of the residual  %  2  is estimated by the 
mean square error:
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  t scores for each estimated coefficient  !  1  
ij  , ...,  !  4  

ij   are computed by 
dividing the vector of the estimated coefficients  !  ij  by its standard 
error
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  The p values are then computed based on the  t  distribution 
with (m – 4) degrees of freedom.

  The "owchart in  figure 6  summarizes the steps taken on both 
the host machine and the GPU. Furthermore, this "owchart 
shows the scope operations on a per-grid, per-block, and per-
thread basis. 

  Fig. 5.  GPU threads cooperation. The epistatic interactions matrix to be computed, of size  n   !   n , is divided into 
chunks of size  n  GPU   !   n  GPU . Note that the epistatic interaction matrix is symmetric; it is therefore only neces-
sary to compute the upper triangular values, grayed out on this diagram. The chunks are computed sequen-
tially. Each chunk is divided into blocks of size  BS   !   BS . Each of those blocks is computed in parallel by  BS   !  
 BS  threads. 
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  Appendix B: MRI Data Acquisition, Sample, and 
Extraction of Hippocampal Volume

  Structural MRI Sample Acquisition of Hippocampal Volume 
Data and Quality Control
  Structural MRI with high-resolution T 1 -weighted images ad-

equate for morphometry was available for 204 patients with re-
current unipolar depression and 186 control subjects. MRI was 
acquired on a 1.5 Tesla clinical scanner (General Electric, Signa 
Excite, Milwaukee, Wisc., USA) at the Max Planck Institute of 
Psychiatry in the context of the Munich recurrent unipolar de-
pression and the Munich Antidepressant Response Signature 
(MARS) studies. The first of these projects gathered data for 200 
patients with recurrent depression and 200 control subjects with 
no history of psychiatric disease, and the second one for more 
than 170 patients with a depressive disorder. MRI-based criteria 
for exclusion were signs of territorial brain infarction, gross de-

velopmental abnormality, brain neoplasm, and incomplete cover-
age of the skull, excessive motion artifact, or gross normal vari-
ants such as arachnoid cysts that prevent appropriate automated 
segmentation. The reported sample comprises 567 subjects (379 
patients, 188 controls) with a mean age of 48.0 years (SD 13.3) and 
a gender distribution of men/women of 239/328 (42.1% men). The 
clinical inclusion and exclusion criteria of both studies have pre-
viously been reported in detail  [25, 41, 42] . Images used for mor-
phometry were high-resolution T 1 -weighted images with opti-
mized grey matter (GM)/white matter (WM)/cerebrospinal "uid 
(CSF) contrast [sequence details: sagittal T 1 -weighted spoiled gra-
dient echo sequence, TR 10.3 s, TE 3.4 ms, 124 slices, matrix size 
256  !  256, FOV 23.0  !  23.0  !  (14.9–17.4) cm 3 , matrix size 256 
 !  256, voxel size 0.8975  !  0.8975  !  (1.2–1.4) mm 3 , "ip angle 90   °   ;
birdcage resonator, post head coil upgrade: TR 9.7 ms, TE 2.1 ms, 
124–132 slices, FOV 25  !  25 cm 2 , matrix size 256  !  256, voxel 
size 0.875  !  0.875  !  1.2 mm 3 , f lip angle 15   °   ].

Load SNP set1 and SNP set2 genotype matrices
and phenotype vector in host memory

Partition genotype matrices into partition
size of n SNPs GPU

Set up two-level nested loop applying to all
possible SNP pairs in partition size of n SNPs GPU

Copy genotypic and phenotypic data on
GPU global memory

Invoke GPU kernel

Transfer output results from GPU global memory
to host memory

Retain SNP pairs if p value is below predefined
threshold and append to results file

End GLIDE

Test if end of genotype input
matrix is reached

Host

Create matrices A and T in GPU-shared memory

Compute covariance matrix for a specific
SNP pair from elements in matrix T

Solve for estimated parametric coefficients

Evaluate residual variance

Perform statistical test on interaction term

Copy results to GPU global memory

GPU
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  Fig. 6.  GLIDE’s thread cooperation. 
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  Preprocessing of Hippocampal Volume MRI Data
  Image preprocessing was performed for voxel-based mor-

phometry to gain GM and WM maps with preserved local volume 
in stereotactic space. Preprocessing was performed using SPM8, 
MRIcro graphics, and in-house software written in Matlab 7.0.4 
(MathWorks, Natick, Mass., USA) and IDL 6.3. The focus was on 
optimized coregistration between subjects, which is a prerequisite 
for valid automated regional volumetry. We employed the diffeo-
morphic image registration algorithm referred to as DARTEL, 
which optimizes intersubject alignment  [43] . T 1 -weighted high-
resolution images were subjected to inhomogeneity correction, 
spatial normalization, and segmentation into GM, WM, and CSF 
using the unified segmentation algorithm  [44] , implemented in 

SPM8, and prior probability maps of the standard SPM8 distribu-
tion in MNI152 space (resolution 2  !  2  !  2 mm 3 ), based on maps 
from the International Consortium for Brain Mapping. After a 
first affine alignment of the segmented GM and WM maps to 
MNI space, these were iteratively coregistered with six genera-
tions of GM and WM template pairs in MNI space using linear 
and non-linear deformations. Default settings were used to spec-
ify outer and inner iterations, regularization parameters for each 
iteration, and optimization settings. Templates at 1.5  !  1.5  !  1.5 
mm 3  resolution were based on the DARTEL coregistration of 550 
independent healthy adults of the IXI-cohort, available from the 
VBM8 toolbox. The "ow fields resulting from the DARTEL coreg-
istration were applied to segmented native GM, WM, and CSF 
with Jacobian modulation appended to preserve local volumes. 
Resulting modulated images were checked visually for consistent 
alignment and interpolated to a resolution of 1  !  1  !  1 mm 3  to 
make optimal use of the original resolution of the cytoarchitec-
tonic probability maps.

  Automated Regional Volumetry for Hippocampal Volume 
Data
  Based on histologically validated cytoarchitectonic probabil-

ity maps of hippocampal subregions  [45] , we derived maximum 
probability maps (resolution 1  !  1  !  1 mm 3 ) that comprise the 
entire left and right hippocampus proper  [46]  including the cornu 
ammonis, fascia dentata together with CA4 (referred to as dentate 
gyrus), and the subiculum. The sum of all modulated GM and 
WM voxels of the bilateral hippocampal complexes was calcu-
lated using an in-house software programmed in IDL. The total 
intracranial volume was estimated by computing the inverse of 
the determinant of the affine matrix resulting from an affine 
coregistration of the brains with a template in MNI space (using 
the FSL software). This estimate is referred to as eTIV and was 
used for later residualization. In addition, for proof-of-concept 
analyses and to detect segmentation failures, total GM, WM, and 
CSF volumes were extracted and normalized to eTIV. The coreg-
istration quality is documented in  figure 7 , which shows a mean 
image of all normalized T 1 -weighted images (a) and GM maps (b) 
resulting from the DARTEL algorithm. Note the sharp delinea-
tion of the cortical ribbon in both examples.

a b

  Fig. 7.  Coregistration quality of hippo-
campus volume data. Mean image of all 
normalized T 1 -weighted images ( a ) and 
GM maps ( b ) as emerging from the DAR-
TEL algorithm.  
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  Fig. 8.  Distribution of the residualized bilateral hippocampal vol-
umes. The residualized volumes are normally distributed. 
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  Proof-of-Concept Analyses and Residualization
  Proof-of-concept analyses confirmed the typical age depen-

dency of normalized total GM, WM, and CSF. In order to gain a 
single parametric phenotype per subject, the original bilateral 
hippocampal volumes were residualized against the estimated to-
tal intracranial volume, age, squared age, gender, gender  !  age, 
gender  !  squared age, and scanner type in a multiple linear re-
gression model that included all subjects. The residualized vol-
umes are normally distributed (Shapiro-Wilk normality test p = 
0.319;  fig. 8 ). 
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  Web Resources

  The URLs for data and software presented herein are as fol-
lows: 

  GLIDE is available at http://mlcb.is.tuebingen.mpg.de/For-
schung/glide/ 

  SNP annotations are based on Hapmap Genome Browser, 
http://hapmap.ncbi.nlm.nih.gov/

  European Genome-phenome Archive (EGA), http://www.ebi.
ac.uk/ega 

  SPM8, http://www.fil.ion.ucl.ac.uk/spm/software/spm8 
  MRIcro graphics software, http://www.sph.sc.edu/comd/ror-

den/mricro.html 
  IDL 6.3, http://www.creaso.com 
  International Consortium for Brain Mapping (ICBM), http://

www.loni.ucla.edu/ICBM IXI-cohort, http://www.brain-devel-
opment.org 

  VBM8 toolbox, http://dbm.neuro.uni-jena.de/vbm8 
  FSL software, http://www.fmrib.ox.ac.uk/fsl
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