Fast nearest neighbor retrieval for bregman divergences

Lawrence Cayton UC San Diego

Nearest neighbor search

query:

(very large) database:

q =

find best match in X =

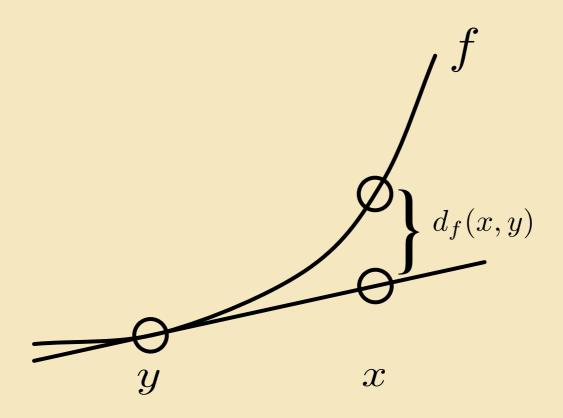
- NN methods ubiquitous, but expensive
- Many NN data structures designed to reduce the complexity, mostly for metrics
- In learning, vision, text, use many non-metric measures; a prominent example is the KL-divergence.

This work: a data structure designed for bregman divergences.

Bregman divergence def

For strictly convex $f: \mathbb{R}^d \to \mathbb{R}$,

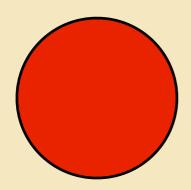
$$d_f(x,y) \equiv f(x) - f(y) - \langle \nabla f(y), x - y \rangle$$



Bregman divergence examples

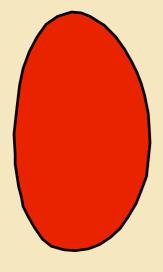
 ℓ_2^2

$$d_f(x,y) = \frac{1}{2} ||x - y||_2^2$$



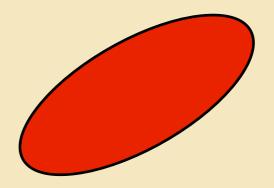
KL-divergence

$$d_f(x,y) = \sum x_i \log \frac{x_i}{y_i}$$



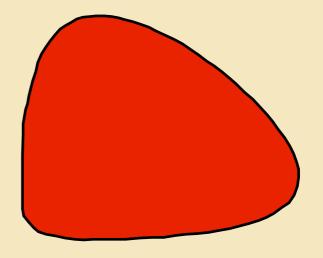
Mahalanobis $(Q \succ 0)$

$$d_f(x,y) = \frac{1}{2}(x-y)^{\top}Q(x-y)$$



Itakura-Saito

$$d_f(x,y) = \sum \left(\frac{x_i}{y_i} - \log \frac{x_i}{y_i} - 1\right)$$



Bregman divergences VS metrics

Metrics:

non-negativity

$$d(x,y) \ge 0$$

symmetry

$$d(x,y) = d(y,x)$$

triangle inequality

$$d(x,y) + d(y,z) \ge d(x,z)$$

Bregman divergences VS metrics

Metrics:

non-negativity

$$d(x,y) \ge 0$$

symmetry

$$d(x,y) = d(y,x)$$

triangle inequality

$$d(x,y) + d(y,z) \ge d(x,z)$$

Bregman divergences:

non-negativity

$$d_f(x,y) \ge 0$$

symmetry

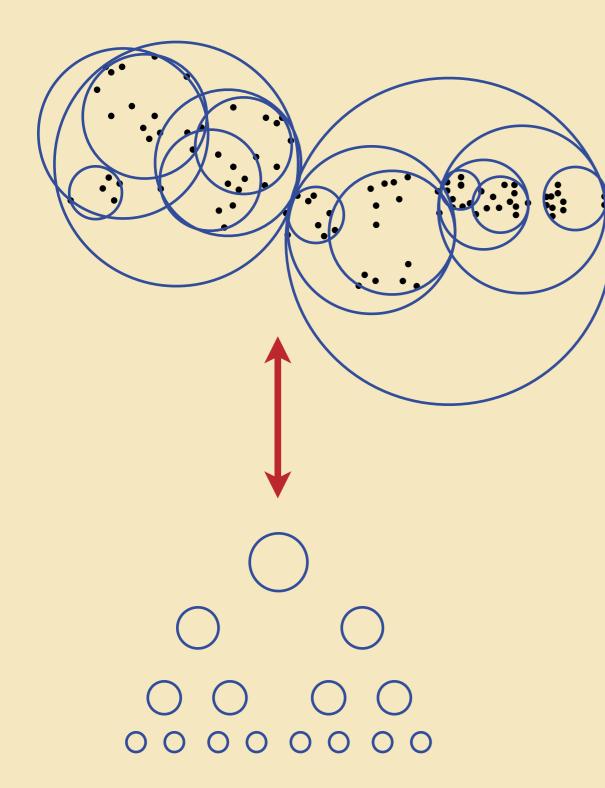
$$d_f(x,y) = d_f(y,x)$$

triangle inequality

$$d_f(x,y) + d_f(y,z) \ge d_f(x,z)$$

Review: tree-based NN retrieval

e.g. kd-trees, metric trees, many many variants



Hierarchical space decomposition

Search via branch and bound exploration

Bregman ball trees

• Fundamental geometric unit: bregman ball.

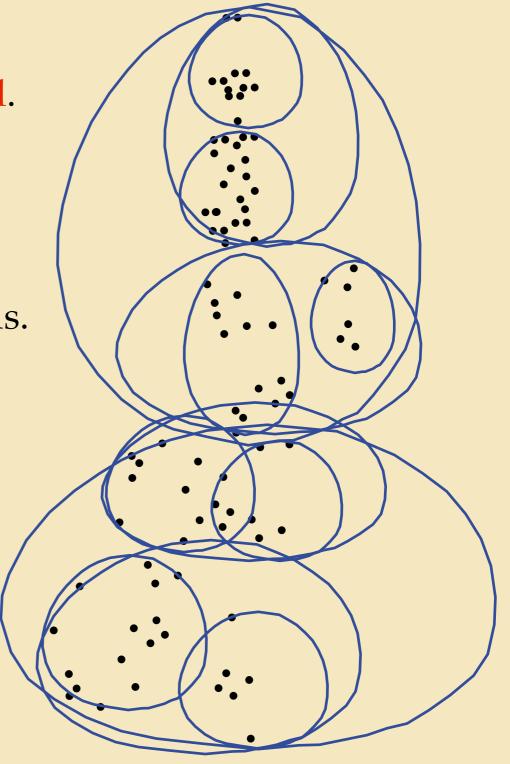
$$B(\mu, R) \equiv \{x : d_f(x, \mu) \le R\}$$

Need a reasonable build heuristic.

Can't use the triangle inequality for bounds.

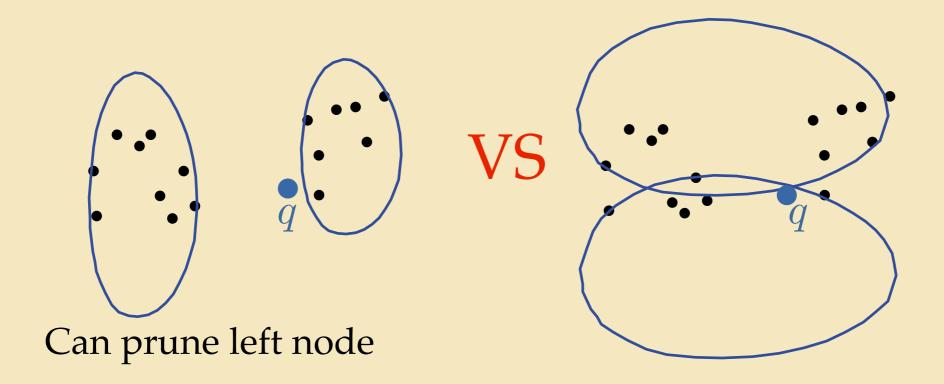
Need to handle asymmetry of divergence.

(Not covered here -- see paper)



bbtree -- build

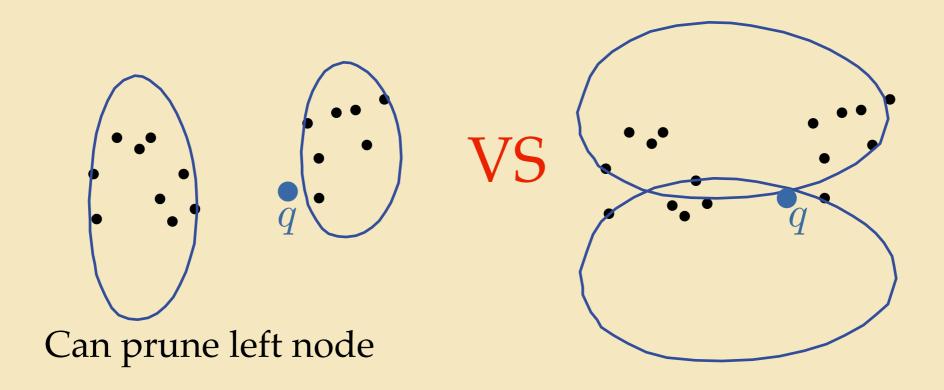
Intuition: at each level, want balls that are well separated & compact.



Have to search both

bbtree -- build

Intuition: at each level, want balls that are well separated & compact.



Have to search both

Build method: Deploy *k*-means hierarchically (top-down).

(k-means was generalized to bregman divergences in Banerjee et al. 2005)

bbtree -- search

Want to find the **left** NN:

$$\operatorname{argmin}_{x \in X} d_f(x, q)$$

Branch & bound search:

- 1. Descend tree, choosing child whose mean is closest to *q. Ignore* the sibling.
- 2. At leaf, compute distances to all points; call the nearest the *candidate* NN x_c .
- 3. Traverse back up tree; check the ignored nodes. If

$$d_f(x_c, q) > \min_{x \in B(\mu, R)} d_f(x, q)$$

dist to bregman ball

need to explore it.

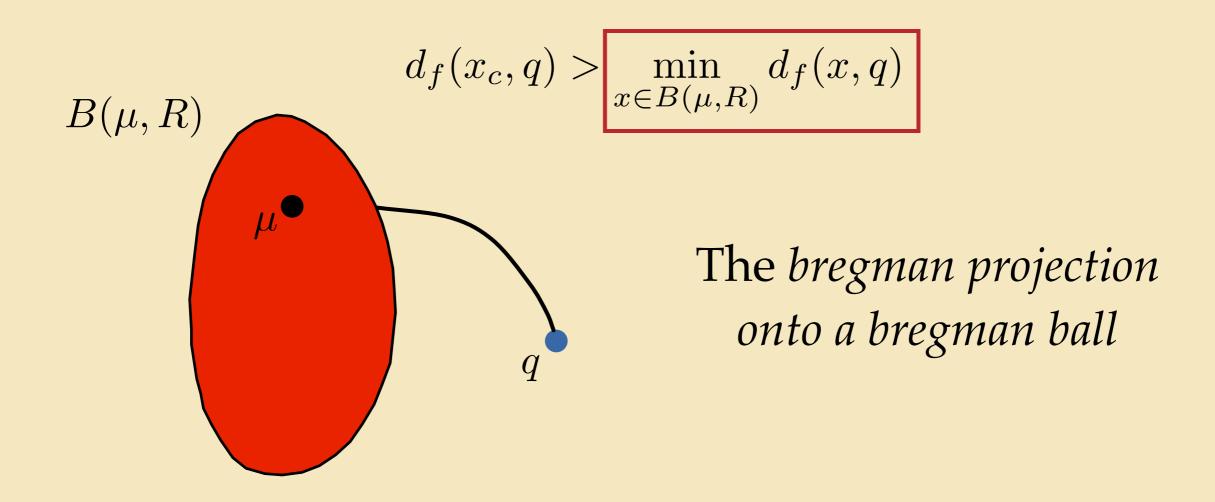
Computing the bound

Need to check if

$$d_f(x_c, q) > \min_{x \in B(\mu, R)} d_f(x, q)$$

Computing the bound

Need to check if

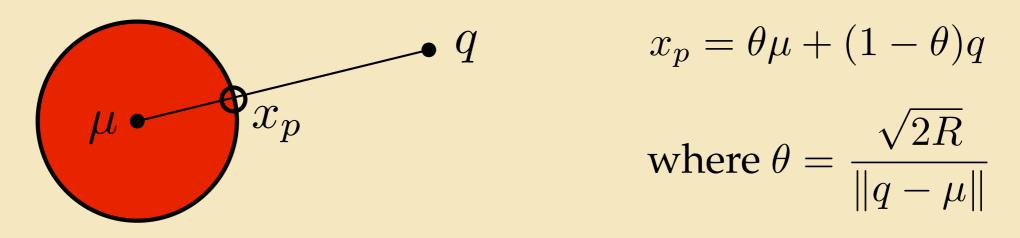


Convex, but need to compute it in time comparable to evaluating an analytic expression

The ℓ_2^2 case

$$\min_{x} \quad \frac{1}{2} \|x - q\|^2$$
subject to:
$$\frac{1}{2} \|x - \mu\|^2 \le R$$

Can compute projection analytically:



Easy because

 x_p is on line between μ and q

The general case

$$\min_{x} \quad d_f(x,q)$$
 subject to: $d_f(x,\mu) \leq R$

Something similar holds...

The general case

$$\min_{x} \quad d_f(x,q)$$
 subject to:
$$d_f(x,\mu) \leq R$$

Something similar holds...

Claim 1:
$$\nabla f(x_p) = \theta \nabla f(\mu) + (1 - \theta) \nabla f(q)$$
.

The ℓ_2^2 relationship is a special case since $\nabla f(x) = x$.

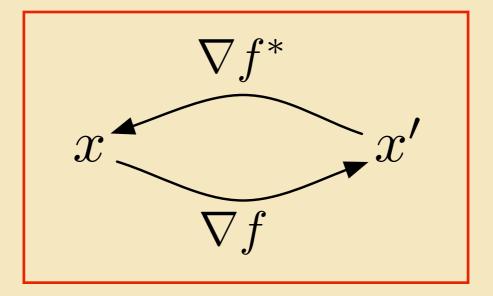
Nearly as useful....

Since *f* strictly convex,

$$\nabla f$$
 is one-to-one.

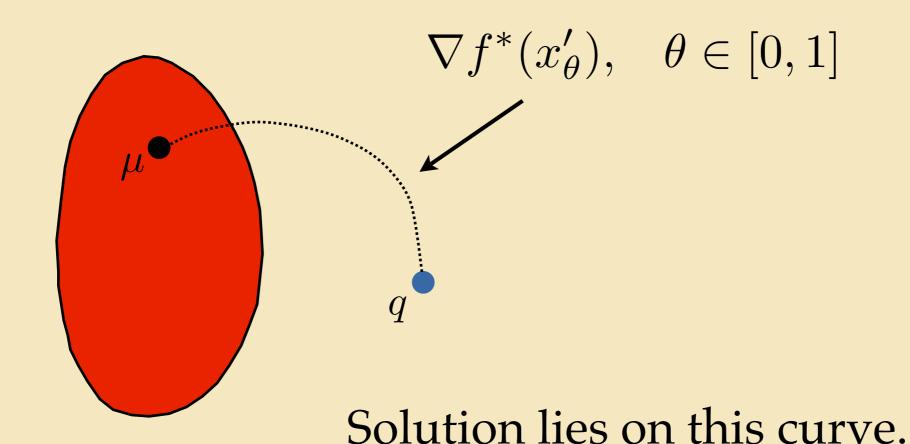
Moreover, its inverse is given by the gradient of

$$f^*(y) \equiv \sup_{x} \{\langle x, y \rangle - f(x)\}.$$



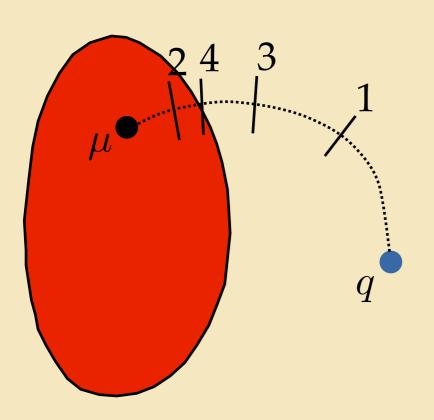
Thus can recover x_p from $\nabla f(x_p)$

Notation:
$$\mu' \equiv \nabla f(\mu)$$
 $q' \equiv \nabla f(q)$ $x'_{\theta} \equiv \theta \mu' + (1-\theta)q'$



Algorithm

Bisection search on θ for x satisfying $d_f(x, \mu) = R$.



1.
$$\theta_1 = \frac{1}{2}$$

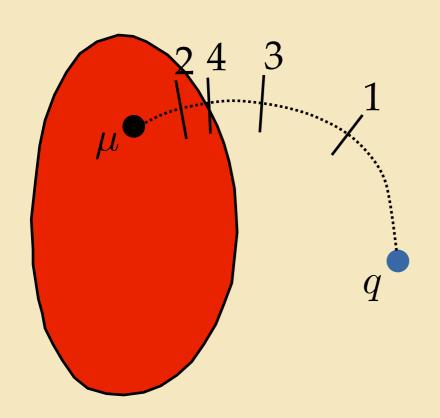
2.
$$\theta_2 = \frac{1}{4}$$

3.
$$\theta_3 = \frac{3}{8}$$

4.
$$\theta_4 = \frac{5}{16}$$

Algorithm

Bisection search on θ for x satisfying $d_f(x, \mu) = R$.



1.
$$\theta_1 = \frac{1}{2}$$

2.
$$\theta_2 = \frac{1}{4}$$

3.
$$\theta_3 = \frac{3}{8}$$

4.
$$\theta_4 = \frac{5}{16}$$

- Can compute a solution to accuracy ϵ in $\log \frac{1}{\epsilon}$ steps.
- Each step requires 1 gradient evaluation and 1 divergence evaluation.

But: Don't actually need an exact solution.

Only need to determine if:

$$d_f(x_c, q) > \min_{x \in B(\mu, R)} d_f(x, q)$$

(x_c is the current candidate NN)

But: Don't actually need an exact solution.

Only need to determine if:

$$d_f(x_c, q) > \min_{x \in B(\mu, R)} d_f(x, q)$$

(x_c is the current candidate NN)

i.e. upper and lower bounds suffice

Lower bound: weak duality

$$\mathcal{L}(\theta) \equiv d_f(x_{\theta}, q) + \frac{\theta}{1 - \theta} \Big(d_f(x_{\theta}, \mu) - R \Big) \qquad d_f(x_{\theta}, q) \ge \min_{x \in B(\mu, R)} d_f(x, q)$$

$$\le \min_{x \in B(\mu, R)} d_f(x, q)$$
for facilla m

Upper bound: primal

$$d_f(x_\theta, q) \ge \min_{x \in B(\mu, R)} d_f(x, q)$$

for feasible x_{θ}

Evaluate bounds at each step of bisection to stop early.

Experiments: KL-divergence

Why KL divergence?

- Used extensively to compare histograms (e.g. text, vision).
- No (correct) NN schemes out there for it.
- Mahalanobis, ℓ_2^2 can be handled by metric methods.

Data sets

- **rcv-***D*: 500k documents from the RCV corpus represented as a *D*-dimensional distribution over topic (generated using LDA).
- Corel histograms: 60k color histograms, 64-dimensional.
- **Semantic space**: 371-dimensional representation of 5000 images (from CBIR literature)
- **SIFT signatures**: 1111-dimensional quantized histogram representation of 10k images from PASCAL 2007 dataset

Approx search experiments

Stop search early (after examining only a few leaves) -- standard practice with metric, kd-trees, etc.

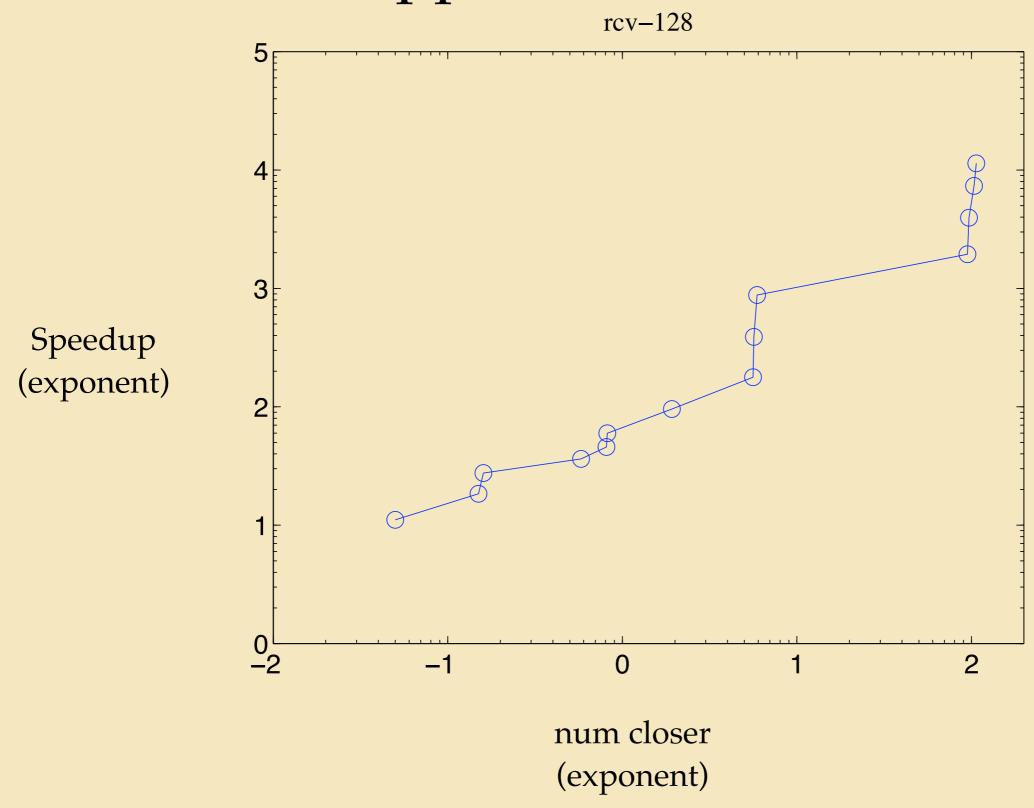
Evaluation

Speedup over brute-force search in execution time.

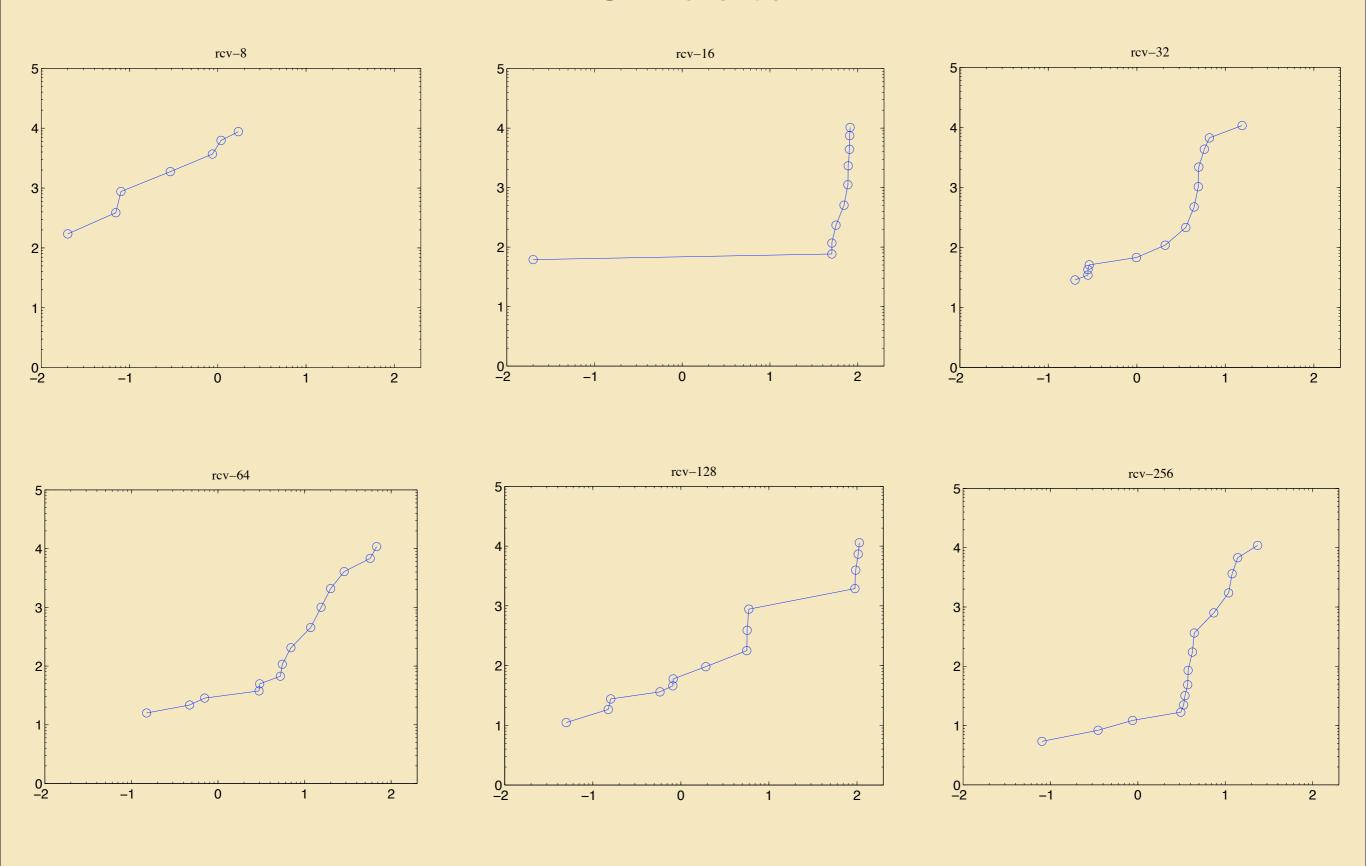
VS

NC for *number closer*: how many closer points are there? *e.g.* if NC=3, the bbtree returned the fourth NN.

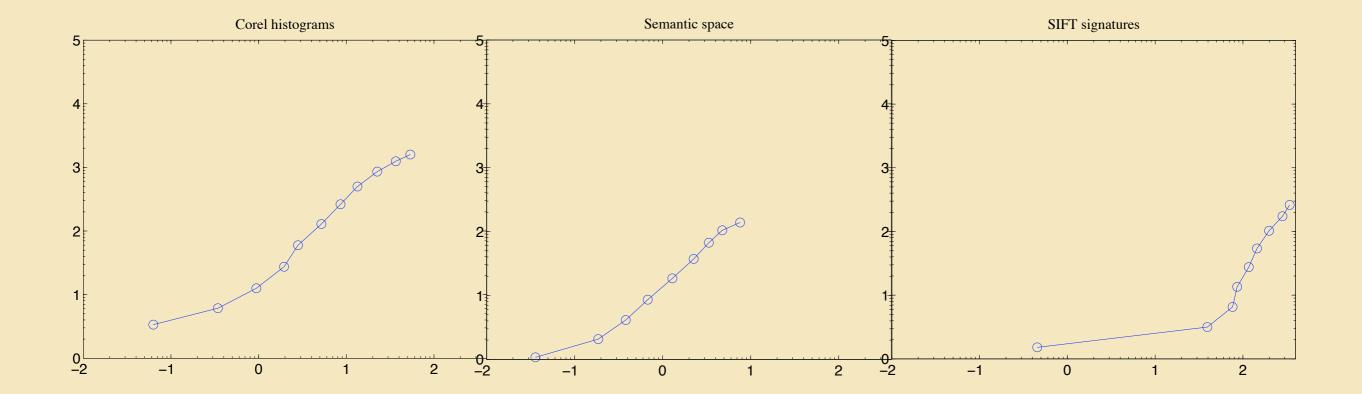
Approximate search



rcv data



corel, semantic space, SIFT



Exact search

dataset	dimensionality	speedup
rcv-8	8	64.5
rcv-16	16	36.7
rcv-32	32	21.9
rcv-64	64	12.0
corel histograms	64	2.4
rcv-128	128	5.3
rcv-256	256	3.3
semantic space	371	1.0
SIFT signatures	1111	0.9

Thanks...

- Serge Belongie
- Sanjoy Dasgupta
- Charles Elkan
- Carolina Galleguillos
- Daniel Hsu
- Nikhil Rasiwasia
- Lawrence Saul