Fast nearest neighbor retrieval for
bregman divergences

Lawrence Cayton
UC San Diego




Nearest neighbor search

(very large) database:

find best match in X =

e NN methods ubiquitous, but expensive

e Many NN data structures designed to reduce the complexity,
mostly for metrics

® In learning, vision, text, use many non-metric measures; a
prominent example is the KL-divergence.

This work: a data structure designed for bregman divergences.




Bregman divergence det

For strictly convex f : R — R,

de(z,y) = f(z) — fly) = (Vfy),z —y)

f




Bregman divergence examples
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Bregman divergences VS metrics

Metrics:

non-negativity symmetry triangle inequality

d(z,y) > 0 d(z,y) = d(y, z) d(z,y) +d(y,z) > d(z, z)




Bregman divergences VS metrics

Metrics:
non-negativity symmetry

d(z,y) >0 d(z,y) = d(y, x)

Bregman divergences:

non-negativity

d¢(z,y) >0

triangle inequality

d(z,y) +d(y, z) > d(x, 2)




Review: tree-based NN retrieval
e.g. kd-trees, metric trees, many many variants

Hierarchical space
decomposition

Search via branch and
bound exploration




Bregman ball trees

e Fundamental geometric unit: bregman ball.

B(p, R) ={x : d¢(z,p) < R}

e Need a reasonable build heuristic.

e Can’t use the triangle inequality for bounds.

e Need to handle asymmetry of divergence.

(Not covered here -- see paper)




bbtree -- build

Intuition: at each level, want balls that are well separated & compact.

q

Can prune left node

Have to search both




bbtree -- build

Intuition: at each level, want balls that are well separated & compact.

q

Can prune left node

Have to search both

Build method: Deploy k-means hierarchically (top-down).

(k-means was generalized to bregman divergences in Banerjee et al. 2005)




bbtree -- search

Want to find the left NN:

argmin__ d¢(z,q)

Branch & bound search:

1. Descend tree, choosing child whose mean is closest
to q. Ignore the sibling.

. At leaf, compute distances to all points; call the near-
est the candidate NN z..

. Traverse back up tree; check the ignored nodes. If

( ) )

( .
dist to —~> df(zc,q) > min _ dp(r,q) ——0 dist to
candidate D&, 1) bregman

' ball
\ NN ) need to explore it. . a )




Computing the bound

Need to check if

de(xe.,q) > ] dr(x,
f(@e, q) Lo (@, q)




Computing the bound

Need to check if

de(x.,q) > ' dr(x,
f(@e, q) Lo (@, q)

The bregman projection
onto a bregman ball

Convex, but need to compute it in time comparable
to evaluating an analytic expression




The /5 case

min 3|z — g
€T

subject to: |z — pl|* <R
\_

Can compute projection analytically:

Lp

Easy because

( T, 1s on line between 1 and ¢ J




The general case

\_

min
€T

subject to:

df(z,q)
df(z,p) < R

J

Something similar holds..




The general case

min ds(x,q)

T

subject to:  d¢(z,u) < R

\_ J

Something similar holds..

Claim 1: Vf(z,) =0V f(u) + (1 —0)Vf(q).

——=3 The /3 relationship is a special case since V f(z) = .

Nearly as useful....




Since f strictly convex,

V f 1s one-to-one.

Moreover, its inverse is given by the gradient of

fy) = Sgp{<wyy> — f(z)}.

Thus can recover x,, from V f(x,)




Notation:

Solution lies on this curve.




Algorithm

Bisection search on 6 for x satisfying d¢(x, 1) = R.
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Algorithm

Bisection search on 6 for x satisfying d¢(x, 1) = R.
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e Can compute a solution to accuracy e in log < steps.

e Each step requires 1 gradient evaluation and 1 divergence evaluation.

Very fast.




But: Don’t actually need an exact solution.

Only need to .
de(x.,q) > d¢(x,
determine if: F(@e: ) :cerl—gl(llfl,R) 7(z: )

(x. is the current candidate NIN)




But: Don’t actually need an exact solution.

Only need to .
df(@e, q) > dy(z,
determine if: F(es ) :cegl(llfl, R) f(z, q)

(x. is the current candidate NIN)

i.e. upper and lower bounds suffice

Lower bound: weak duality Upper bound: primal

0
r | — R d > i d
(9) df(ll?g,Q) 1 Q(df(xg,/i) ) f(vaC.Z) - :BEB(I,LILl,R) f(x7Q)

min  dy(z,q)

z€B(u,R) for feasible xg

Evaluate bounds at each step of bisection to stop early.




Experiments: KL-divergence

Why KL divergence?

e Used extensively to compare histograms (e.g. text, vision).
e No (correct) NN schemes out there for it.

e Mahalanobis, /3 can be handled by metric methods.




Data sets

rcv-D: 500k documents from the RCV corpus represented

as a D-dimensional distribution over topic (generated us-
ing LDA).

Corel histograms: 60k color histograms, 64-dimensional.

Semantic space: 371-dimensional representation of 5000
images (from CBIR literature)

SIFT signatures: 1111-dimensional quantized histogram
representation of 10k images from PASCAL 2007 dataset




Approx search experiments

Stop search early (after examining only a few leaves)
-- standard practice with metric, kd-trees, etc.

Evaluation

Speedup over brute-force search in execution time.

\%s

NC for number closer: how many closer points are there? e.g. if
NC=3, the bbtree returned the fourth NN.




Approximate search

rcv—128
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corel, semantic space, SIFT

Corel histograms Semantic space SIFT signatures
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Exact search

dataset

dimensionality

speedup

rcv-8

8

64.5

rcv-16

16

36.7

rcv-32

32

21.9

rcv-64

64

12.0

corel histograms

64

2.4

rcv-128

5.3

rcv-256

3.3

semantic space

1.0

SIFT signatures

0.9
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