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Nearest neighbor search
(very large) database:

[ ]
query:

find best match in

• NN methods ubiquitous, but expensive
• Many NN data structures designed to reduce the complexity, 
mostly for metrics
• In learning, vision, text, use many non-metric measures; a 
prominent example is the KL-divergence.

This work: a data structure designed for bregman divergences.

q = X =



Bregman divergence def

}

xy

f

df (x, y)

df (x, y) ≡ f(x)− f(y)− 〈∇f(y), x− y〉

For strictly convex f : Rd → R,



Bregman divergence examples

df (x, y) = 1
2‖x− y‖2

2 df (x, y) = 1
2 (x− y)!Q(x− y)

df (x, y) =
∑

xi log xi
yi

df (x, y) =
∑(

xi
yi
− log xi

yi
− 1

)

!22 Mahalanobis (Q ! 0)

KL-divergence Itakura-Saito



Metrics:

Bregman divergences VS metrics

non-negativity 

d(x, y) ≥ 0

symmetry 

d(x, y) = d(y, x)

triangle inequality

d(x, y) + d(y, z) ≥ d(x, z)
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Bregman divergences:

non-negativity 

df (x, y) ≥ 0

symmetry 

df (x, y) = df (y, x)

triangle inequality

df (x, y) + df (y, z) ≥ df (x, z)



e.g. kd-trees, metric trees, many many variants
Review: tree-based NN retrieval

Hierarchical space 
decomposition

Search via branch and 
bound exploration



Bregman ball trees

•Fundamental geometric unit: bregman ball.

•Need a reasonable build heuristic.

•Can’t use the triangle inequality for bounds.

•Need to handle asymmetry of divergence.

B(µ, R) ≡ {x : df (x, µ) ≤ R}

(Not covered here -- see paper)



Intuition: at each level, want balls that are well separated & compact.

bbtree -- build

VS
q q

Can prune left node

Have to search both



Intuition: at each level, want balls that are well separated & compact.

bbtree -- build

VS
q q

Can prune left node

Have to search both

Build method: Deploy k-means hierarchically (top-down).

(k-means was generalized to bregman divergences in Banerjee et al. 2005)



Want to find the left NN:

bbtree -- search

argminx∈Xdf (x, q)

Branch & bound search:
1. Descend tree, choosing child whose mean is closest

to q. Ignore the sibling.

2. At leaf, compute distances to all points; call the near-
est the candidate NN xc.

3. Traverse back up tree; check the ignored nodes. If

df (xc, q) > min
x∈B(µ,R)

df (x, q)

need to explore it.

dist to 
bregman 

ball

dist to 
candidate 

NN



Need to check if 

Computing the bound

df (xc, q) > min
x∈B(µ,R)

df (x, q)



Need to check if 

Computing the bound

df (xc, q) > min
x∈B(µ,R)

df (x, q)
B(µ, R)

µ

q

The bregman projection 
onto a bregman ball

Convex, but need to compute it in time comparable 
to evaluating an analytic expression



The !22 case

Can compute projection analytically:

q

µ xp

xp = θµ + (1− θ)q

where θ =
√

2R

‖q − µ‖

min
x

1
2‖x− q‖2

subject to: 1
2‖x− µ‖2 ≤ R

Easy because
xp is on line between µ and q



The general case

min
x

df (x, q)

subject to: df (x, µ) ≤ R

Something similar holds..



The general case

The !22 relationship is a special case since∇f(x) = x.

Nearly as useful....

Claim 1: ∇f(xp) = θ∇f(µ) + (1− θ)∇f(q).

min
x

df (x, q)

subject to: df (x, µ) ≤ R

Something similar holds..



Since f strictly convex,

∇f is one-to-one.

Moreover, its inverse is given by the gradient of 

f∗(y) ≡ sup
x

{〈x, y〉 − f(x)} .

x′x

∇f∗

∇f

Thus can recover xp from∇f(xp)



Notation: µ′ ≡ ∇f(µ)
q′ ≡ ∇f(q)
x′

θ ≡ θµ′ + (1− θ)q′

Solution lies on this curve.

∇f∗(x′
θ), θ ∈ [0, 1]

µ

q



Algorithm

1. θ1 = 1
2

2. θ2 = 1
4

3. θ3 = 3
8

4. θ4 = 5
16

1
34

µ

q

2

Bisection search on θ for x satisfying df (x, µ) = R.



• Can compute a solution to accuracy ε in log 1
ε steps.

• Each step requires 1 gradient evaluation and 1 divergence evaluation.

Very fast.

Algorithm

1. θ1 = 1
2

2. θ2 = 1
4

3. θ3 = 3
8

4. θ4 = 5
16

1
34

µ

q

2

Bisection search on θ for x satisfying df (x, µ) = R.



But: Don’t actually need an exact solution.

df (xc, q) > min
x∈B(µ,R)

df (x, q)Only need to 
determine if:

(xc is the current candidate NN)



But: Don’t actually need an exact solution.

df (xc, q) > min
x∈B(µ,R)

df (x, q)Only need to 
determine if:

(xc is the current candidate NN)

i.e. upper and lower bounds suffice

Lower bound: weak duality Upper bound: primal

df (xθ, q) ≥ min
x∈B(µ,R)

df (x, q)

for feasible xθ

L(θ) ≡ df (xθ, q) +
θ

1− θ

(
df (xθ, µ)−R

)

≤ min
x∈B(µ,R)

df (x, q)

Evaluate bounds at each step of bisection to stop early.



Why KL divergence?

Experiments: KL-divergence

• Used extensively to compare histograms (e.g. text, vision).

• No (correct) NN schemes out there for it.

• Mahalanobis, !22 can be handled by metric methods.



Data sets

• rcv-D: 500k documents from the RCV corpus represented
as a D-dimensional distribution over topic (generated us-
ing LDA).

• Corel histograms: 60k color histograms, 64-dimensional.

• Semantic space: 371-dimensional representation of 5000
images (from CBIR literature)

• SIFT signatures: 1111-dimensional quantized histogram
representation of 10k images from PASCAL 2007 dataset



Speedup over brute-force search in execution time.

Approx search experiments  

NC for number closer: how many closer points are there?  e.g. if 
NC=3, the bbtree returned the fourth NN.

VS

Stop search early (after examining only a few leaves)
           -- standard practice with metric, kd-trees, etc. 

Evaluation



Approximate search
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rcv data
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corel, semantic space, SIFT
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Exact search

dataset dimensionality speedup
rcv-8 8 64.5
rcv-16 16 36.7
rcv-32 32 21.9
rcv-64 64 12.0
corel histograms 64 2.4
rcv-128 128 5.3
rcv-256 256 3.3
semantic space 371 1.0
SIFT signatures 1111 0.9
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