Robust Euclidean Embedding

Lawrence Cayton, Sanjoy Dasgupta

University of California, San Diego

Embedding / multidimensional scaling

Another view:

Project D onto the Euclidean distance matrix (\mathbb{EDM}) cone.

Machine learning uses

- Visualization
- · Dimensionality reduction:

given
$$y_1, \dots, y_n \in \mathbf{R}^D$$
, find $x_1, \dots, x_n \in R^d$ s.t.
$$||x_i - x_j|| \approx ||y_i - y_j||$$

· Adapting non-Euclidean dissimilarity measures to Euclidean algorithms

To be discussed

- I. Classical MDS and some problems with it.
- II. An alternative: Robust Euclidean Embedding.
- III. Hardness of embedding for dimensionality reduction.

Schoenberg's EDM criterion

$$D \in \mathbb{EDM} \iff \begin{cases} -\frac{1}{2}HDH \succeq 0 \\ D_{ij} \geq 0 \\ D_{ii} = 0 \end{cases} \quad (i \neq j)$$

where
$$H = I - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}$$

- •When $D \in \mathbb{EDM}$, $B := -\frac{1}{2}HDH$ will be a Gram matrix for the underlying configuration.
- •Otherwise?

Classical multidimensional scaling

Map example

D = distances between 10 US cities

cMDS embedding:

Corrupt the distance between NYC and LA (double it).

cMDS embedding:

One corrupted distance (out of 45) ruined the embedding.

Kruskal & Wish 1978

Error dispersion

 $D^* \in \mathbb{EDM}$

Form D by corrupting one entry of D^*

$$B := -\frac{1}{2}HDH$$

When is this effect felt?

• Dissimilarities where the noise scales with the magnitude

e.g.: Isomap. Small local distances are accurate, large distances are rough estimates of geodesics.

• Fundamentally non-Euclidean dissimilarities at multiple scales

e.g.: KL-divergence.

Classical MDS issues

cost function:
$$f(D^*) = ||HDH - HD^*H||_2$$

- I. Error dispersion
- II. Frobenius norm
- III. Can't handle missing entries
- IV. Can't adjust weighting

Robust Euclidean Embedding

Classical MDS program:

$$\min \quad ||HDH - HD^*H||_2$$
 subject to $D^* \in \mathbb{EDM}$

REE program:

$$\min \quad ||D - D^*||_1$$
 subject to
$$D^* \in \mathbb{EDM}$$

... as a SDP:

min
$$\sum_{i,j} \xi_{ij}$$
 subject to
$$-\xi_{ij} \leq D_{ij} - B_{ii} - B_{jj} + 2B_{ij} \leq \xi_{ij}$$

$$\sum_{ij} B_{ij} = 0$$

$$B \succeq 0; \quad \xi_{ij} \geq 0$$

Linial, London, Rabinovich 1995; Dattorro 2005

Solving the REE program

For $n \approx 100$: general purpose SDP solver works [e.g. SDPT3].

For larger n: first-order descent method.

$$cost$$
 $f(B) = \sum_{ij} W_{ij} |D_{ij} - [dist(B)]_{ij}|$

subgradient
$$[G(B)]_{ij} = \begin{cases} W_{ij} \mathbf{I}([\operatorname{dist}(B)]_{ij} < D_{ij}) & \text{if } i \neq j; \\ \sum_{k} W_{ik} \mathbf{I}([\operatorname{dist}(B)]_{ik} > D_{ik}) & \text{if } i = j. \end{cases}$$

(**I** denotes the indicator function returning +/- 1)

procedure

loop

I. Move along subgradient

II. Project back onto PSD cone

Robust Euclidean Embedding

(subgradient implementation) input: $D, W \in \mathbf{R}^{n \times n}$

- 1. Set $B^0 \in \mathbf{R}^{n \times n}$ randomly.
- 2. for k = 1, 2, ...
 - Set $B := B^{k-1} \alpha_k G(B^{k-1})$.
 - Spectrally decompose $B: B = U\Lambda U^{\top}$.
 - Set $[\Lambda_+]_{ij} := \max\{\Lambda_{ij}, 0\}.$
 - $\bullet \ B^k := U\Lambda_+ U^\top.$
- 3. Pick k minimizing $\left(\sum_{ij} W_{ij} |D_{ij} \operatorname{dist}(B^k)|\right)$.
- 4. Return $X := U\Lambda^{1/2}$, where $U\Lambda U^{\top}$ is the spectral decomposition of B^k .

Map example

Shape distance

Measures the similarity of two images as shapes.

Procedure:

- I. Sample points from each image
- II. Match up the points (bi-partite matching)
- III. Compute the energy necessary to morph one image into the other.

http://www.seas.upenn.edu/~cse399b/

Shape distance* experiment

- 1. Computed the shape distance for 1000 MNIST digit images.
- 2. Embedded the distances using both cMDS and REE.
- 3. Classified each image using its nearest Euclidean neighbor among the remaining 999.

Low dimensional embedding

Input: D, k

Find $x_1, \ldots x_n \in \mathbf{R}^k$ such that

$$||x_i - x_j||_2^2 \approx D_{ij}$$

Can find an optimal solution under the cMDS cost function

$$f(D^*) = ||HDH - HD^*H||_2$$

by embedding and then running principal components analysis

Low dimensional embedding

What about under the REE cost function?

$$f(D^*) = ||D - D^*||_1$$

Running PCA afterwards is no longer optimal.

Hardness result

Input: D

Problem: find an embedding minimizing the average distortion:

$$f(D^*) = \sum_{i,j} |D_{ij} - |x_i - x_j||$$

NP-hard.

More generally, for

$$f(D^*) = \sum_{i,j} h(g(D_{ij}) - g(|x_i - x_j|))$$

the embedding problem is NP-hard.

[h, g are symmetric, bi-lipshitz, & monotonic.]

Trace heuristic

Common rank-reduction heuristic

min
$$\sum_{i,j} \xi_{ij} + \boxed{\gamma \cdot \text{trace}(B)}$$
subject to
$$-\xi_{ij} \leq D_{ij} - B_{ii} - B_{jj} + 2B_{ij} \leq \xi_{ij}$$

$$\sum_{ij} B_{ij} = 0$$

$$B \succeq 0; \quad \xi_{ij} \geq 0$$

conflicts with the dual

max
$$\sum_{ij} D_{ij} S_{ij}$$

subject to $S_{ij} \in [-1, +1]$ for $i \neq j$
 $S\mathbf{1} = \gamma \mathbf{1}$
 $S \succeq 0$

Summary

- I. Robustness of Classical MDS
- II. Robust Euclidean Embedding
- III. Hardness of low-dimensional embedding