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Embedding / multidimensional scaling
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Another view:
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Project D onto the Euclidean distance matrix (IEDM) cone.




Machine learning uses

- Visualization

- Dimensionality reduction:

given yy,...,y, € RP, find z1,..., 2, € R? s.t.

|zs — x| = ||y: — yjl

- Adapting non-Euclidean dissimilarity measures to
Fuclidean algorithms




'To be discussed

I. Classical MDS and some problems with it.

II. An alternative: Robust Euclidean Embedding.

III. Hardness of embedding for dimensionality reduction.




Schoenberg’s EDM criterion

where H = [ — %11T

1
eWhen D € EDM, B := — §H DH will be a Gram matrix for the
underlying configuration.

e Otherwise?




Classical multidimensional scaling

B* = UA_|_UT
5]

dissimilarities similarities




Map example

D = distances between 10 US cities

cMDS embedding:

Corrupt the distance between NYC and LA (double it).

cMDS embedding: * ober s

Hou %l @WDC
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One corrupted distance (out of 45) ruined the embedding.

Kruskal & Wish 1978



Error dispersion

D* € EDM
Form D by corrupting one entry of D*




When 1s this effect felt?

» Dissimilarities where the noise scales with the magnitude

e.g.: Isomap. Small local distances are accurate, large distances
are rough estimates of geodesics.

 Fundamentally non-Euclidean dissimilarities at multiple scales

e.g.: KL-divergence.




Classical MDS issues

cost function: f(D*) =|HDH — HD"H||5

I. Error dispersion
II. Frobenius norm
I1I. Can’t handle missing entries

IV. Can’t adjust weighting




Robust Euchidean Embedding

Classical MDS program:

min ||HDH — HD*H||5
subject to D* € EDM

REE :
program min D — D

subject to D* € EDM

... as a SDP: min Y &;

subject to  —&;; < D;j — By — Bjj + 2By < &
2 Bij=0
©j

B=0; &;=>0

Linial, London, Rabinovich 1995; Dattorro 2005



Solving the REE program

For n =~ 100 : general purpose SDP solver works [e.g. SDP'T3].

For larger n: first-order descent method.

cost f(B) — Z Wij‘Dij — [diSt(B)]ij‘

subgradient |G(B)li; = { Wi;I([dist(B)]i; < Dij) if i # j;

> Wikl([dist(B)]ix > Dix) ifi=j.
(T denotes the indicator function returning +/- 1)

loop
I. Move along subgradient
II. Project back onto PSD cone

procedure




Robust Euclidean Embedding
(subgradient implementation )
input: D, W € R™*"*"

1. Set B’ € R™*" randomly.
2. fork=1,2, ...

o Set B := B* ! — q;,G(B*1).

e Spectrally decompose B: B =UAU".
o Set [A4];; := max{A;;,0}.

o BF .= UA_|_UT.

3. Pick k minimizing (zi Wis|Dij — dist(Bk)y).

4. Return X := UAY2, where UAU T is the spectral decomposition of BF.




Embedding
of
original
data

REE -

corrupted
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corrupted
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Shape distance

Measures the similarity of two images as shapes.

Procedure:
[. Sample points from each image
II. Match up the points (bi-partite matching)
[II. Compute the energy necessary to morph one image into the
other.

http://www.seas.upenn.edu/~cse399b/

Belongie, Malik, Puzicha 2002



Shape distance™ experiment

1.Computed the shape distance for 1000 MNIST digit images.

2. Embedded the distances using both
cMDS and REE.
— MDS — REE Raw shape dist
3. Classified each image using its
nearest Euclidean neighbor among
the remaining 999.




Loow dimensional embedding

Input: D, k
Find z1,...z, € R¥ such that

|zs — ;|5 = Dy

Can find an optimal solution under the cMDS cost function
f(D7) = |[HDH — HD"H |,

by embedding and then running principal components analysis

Dhamdhere, Gupta, Ravi 2004; Hastad, [vansson, Lagergren 1998



Loow dimensional embedding

What about under the REE cost function?
f(D*)=||D - D"

Running PCA afterwards 1s no longer optimal.




Hardness result

Input: D

Problem: find an embedding minimizing the average distortion:

FDYY =) D55 — [ — |
7

NP-hard.

More generally, for
(D7) =" h(9(Dij) = gllw — ;1)
6,
the embedding problem i1s NP-hard.

[ h, g are symmetric, bi-lipshitz, & monotonic.]




Trace heuristic

Common rank-reduction heuristic

min Z &ij H - trace(B)
@]

subject to  —&;; < Dj; — By — Bjj + 2B;; < &

conflicts with the dual
max Z Dz'j S@'j
ij

subject to S;; € [—1,+1] for i # j
S1 =71
S =0




Summary

I. Robustness of Classical MDS

II. Robust Euclidean Embedding

III. Hardness of low-dimensional embedding




