A Nearest Neighbor Data Structure for Graphics Hardware

Lawrence Cayton
Max Planck Institute, Tübingen
Problem setting

Database $X = \{x_1, x_2, \ldots, x_n\}$

Query q (or many queries Q)

Metric $d(\cdot, \cdot)$

Goal: return x_i minimizing $d(q, x_i)$

$(\forall q \in Q)$
Hardware setting

Massive parallelism; limited memory; limited communication
Efficient NN search: classic approach

Decompose space; hopefully will only have to look at a small part
Efficient NN search: classic approach

Decompose space; hopefully will only have to look at a small part

Organize cells into a tree:

Explore using branch-and-bound approach
Challenges for parallelism

1. Memory issues, practical and theoretical.
3. Complex conditional computation seems difficult to distribute.
What does work in parallel?

Matrix-matrix multiply

huge amount of work to do, mostly independent.
What does work in parallel?

Matrix-matrix multiply

huge amount of work to do, mostly independent.

Brute-force NN search

basically a matrix-matrix multiply.
Brute force NN search

<table>
<thead>
<tr>
<th>dataset</th>
<th>dim</th>
<th>CPU (s)</th>
<th>GPU (s)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio</td>
<td>74</td>
<td>926.78</td>
<td>9.98</td>
<td>93</td>
</tr>
<tr>
<td>Physics</td>
<td>78</td>
<td>486.68</td>
<td>4.99</td>
<td>97</td>
</tr>
</tbody>
</table>

State-of-the-art data struct: 5-20x / 30-100x

[Beygelzimer et al., 2006, Ram et al., 2009]

see also [Garcia et al., 2008]
Goal

Build a data structure that provides a speedup over GPU brute force

similar to the speedup given by metric trees over CPU brute force.
Random ball cover

- r random representatives
- Ball around representatives containing s points
RBC search algorithm

1. compute nearest representative
RBC search algorithm cont

2. find nearest point within set covered by nearest representative
Algorithm summary

For m queries, algorithm is two brute-force searches:

1. One for the representatives of size $m \cdot r$.
2. Another for the covered points of size $m \cdot s$.

Still fully utilizes parallel architecture, but requires far less work than brute force.
Parameters & Theory

\[r = \# \text{ of reps} \]
\[s = \# \text{ of points assigned to each rep} \]

Pick \(s = r = O(\sqrt{n \log n}) \)

Yields \(O(\sqrt{n \log n}) \) query time (work)

(vs \(O(n) \) for brute force)

Major work reduction; still parallelizable.
Parameters & Theory

Yields $O(\sqrt{n} \log n)$ query time (work)
(vs $O(n)$ for brute force)

Can prove low probability of error under standard notion of intrinsic dimensionality.

Intuition:
Each point belongs to $\log n$ reps on avg.
Overlap boosts probability of success.
Building the RBC

1. Select *representatives* at random

2. For each representative, generate list of *sites owned* L_r
Building on the GPU

For each rep, could compute all distances, then sort the list to get the top s...

..but the sorting time quickly dominates the computation time as s grows; here s is quite large ($\sqrt{n \log n}$)

Why?

• Irregular memory accesses (or work-inefficiency)
• GPU sorting is still an ongoing focus of research
Building on the GPU

Want: build algorithm composed of simple, naturally parallel operations.

Idea: If we knew the range γ such that s points are within distance γ of the rep, we wouldn't need to sort.

.. so perform a sequence of brute force searches to find γ.
Find closest and farthest points via brute force; gives bounds on correct radius
Perform succession of range counts to find correct radius
With correct radius found, perform range *search* to set binary indicator matrix
Finally

Perform parallel scan on bit arrays to produce mapping

0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0

4 7 8 15
Why bother?

All operations are naturally parallel and highly efficient on GPU:

• Brute force searches (essentially matrix-matrix)
• Parallel scan
Experiments: data

<table>
<thead>
<tr>
<th>dataset</th>
<th>dim</th>
<th>size</th>
<th># queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio</td>
<td>74</td>
<td>200k</td>
<td>50k</td>
</tr>
<tr>
<td>Robot</td>
<td>21</td>
<td>1M</td>
<td>1M</td>
</tr>
<tr>
<td>Phy</td>
<td>78</td>
<td>100k</td>
<td>50k</td>
</tr>
</tbody>
</table>
Experiments: search time

<table>
<thead>
<tr>
<th>dataset</th>
<th>Brute (s)</th>
<th>RBC (s)</th>
<th>Speedup</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio</td>
<td>9.97</td>
<td>0.20</td>
<td>49</td>
<td>0.74</td>
</tr>
<tr>
<td>Robot</td>
<td>408.23</td>
<td>3.35</td>
<td>122</td>
<td>0.71</td>
</tr>
<tr>
<td>Phy</td>
<td>4.99</td>
<td>0.14</td>
<td>35</td>
<td>1.34</td>
</tr>
<tr>
<td>dataset</td>
<td>Brute (s)</td>
<td>RBC (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio</td>
<td>9.97</td>
<td>1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robot</td>
<td>408.23</td>
<td>11.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phy</td>
<td>4.99</td>
<td>0.65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Code available for download.