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Nearest neighbor search

(very large) database:

[ ]
query:

Þnd best match in

¥ NN methods ubiquitous, but expensive
¥ Many NN data structures designed to reduce the complexity, 
mostly for metrics
¥ In learning, vision, text, use many non-metric measures; a 
prominent example is the KL-divergence.

This work: a data structure designed for bregman divergences.

q = X =



Bregman divergence def

}

xy

f

df (x, y)

df (x, y) ! f (x) " f (y) " #$ f (y), x " y%

For strictly convex f : Rd → R,



Bregman divergence examples

df (x, y) = 1
2 ! x " y! 2

2 df (x, y) = 1
2 (x − y)! Q(x − y)
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xi log x i
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2 Mahalanobis (Q ! 0)

KL-divergence Itakura-Saito



Metrics:

Bregman divergences VS metrics

non-negativity 

d(x, y) ≥ 0

symmetry 

d(x, y) = d(y, x)

triangle inequality

d(x, y) + d(y, z) ! d(x, z)
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Bregman divergences:

non-negativity 

df (x, y) ! 0

symmetry 

df (x, y) = df (y, x)

triangle inequality

df (x, y) + df (y, z) ! df (x, z)



e.g. kd-trees, metric trees, many many variants
Review: tree-based NN retrieval

Hierarchical space 
decomposition

Search via branch and 
bound exploration



Bregman ball trees

¥Fundamental geometric unit: bregman ball.

¥Need a reasonable build heuristic.

¥CanÕt use the triangle inequality for bounds.

¥Need to handle asymmetry of divergence.

B(µ, R) ! { x : df (x, µ) " R}

(Not covered here -- see paper)



Intuition: at each level, want balls that are well separated & compact.

bbtree -- build

VS
q q

Can prune left node

Have to search both



Intuition: at each level, want balls that are well separated & compact.

bbtree -- build

VS
q q

Can prune left node

Have to search both

Build method: Deploy k-means hierarchically (top-down).

(k-means was generalized to bregman divergences in Banerjee et al.2005)



Want to Þnd the left  NN:

bbtree -- search

argminx∈Xdf (x, q)

Branch & bound search:

1. Descend tree, choosing child whose mean is closest
to q. Ignorethe sibling.

2. At leaf, compute distances to all points; call the near-
est the candidateNN xc.

3. Traverse back up tree; check the ignored nodes. If

df (xc, q) > min
x∈B (µ,R )

df (x, q)

need to explore it.

dist to 
bregman 

ball

dist to 
candidate 

NN



Need to check if 

Computing the bound

df (xc, q) > min
x∈B (µ,R )

df (x, q)



Need to check if 

Computing the bound

df (xc, q) > min
x∈B (µ,R )

df (x, q)
B (µ, R)

µ

q

The bregman projection 
onto a bregman ball

Convex, but need to compute it in time comparable 
to evaluating an analytic expression



The ! 2
2 case

Can compute projection analytically:

q

µ xp

xp = θµ + (1 ! θ)q

where ! =

√
2R

‖q − µ‖

min
x

1
2 ! x " q! 2

subject to: 1
2 ! x " µ! 2 # R

Easy because

xp is on line between µ and q



The general case

min
x

df (x, q)

subject to: df (x, µ) ! R

Something similar holds..



The general case

The ! 2
2 relationship is a special case since! f (x) = x.

Nearly as useful....

Claim 1: ! f(xp) = ! ! f(µ) + (1 " ! )! f(q).

min
x

df (x, q)

subject to: df (x, µ) ! R

Something similar holds..



Since f strictly convex,

! f is one-to-one.

Moreover, its inverse is given by the gradient of 

f ∗(y) ! sup
x

{"x, y# $ f (x)} .

x ′x

! f !

! f

Thus can recoverxp from ∇f (xp)



Notation: µ′ ≡ ∇f (µ)

q′ ≡ ∇f (q)

x ′
θ ≡ θµ′ + (1 − θ)q′

Solution lies on this curve.

! f ! (x"
! ), ! " [0, 1]

µ

q



Algorithm

1. ! 1 = 1
2

2. ! 2 = 1
4

3. ! 3 = 3
8

4. ! 4 = 5
16

1
34

µ

q

2

Bisection search on ! for x satisfying df (x, µ) = R.



• Can compute a solution to accuracy ε in log 1
! steps.

• Each step requires 1 gradient evaluation and 1 divergence evaluation.

Very  fast.

Algorithm

1. ! 1 = 1
2

2. ! 2 = 1
4

3. ! 3 = 3
8

4. ! 4 = 5
16

1
34

µ

q

2

Bisection search on ! for x satisfying df (x, µ) = R.



But: DonÕt actually need an exact solution.

df (xc, q) > min
x∈B (µ,R )

df (x, q)Only need to 
determine if:

(xc is the current candidate NN)



But: DonÕt actually need an exact solution.

df (xc, q) > min
x∈B (µ,R )

df (x, q)Only need to 
determine if:

(xc is the current candidate NN)

i.e. upper and lower bounds sufÞce

Lower bound: weak duality Upper bound: primal

df (x! , q) ! min
x ! B (µ,R )

df (x, q)

for feasible x!

L (! ) ≡ df (xθ, q) +
!

1− !

!
df (xθ, µ)− R

"

≤ min
x ! B (µ,R )

df (x, q)

Evaluate bounds at each step of bisection to stop early.



Why KL divergence?

Experiments: KL-divergence

• Used extensively to compare histograms (e.g.text, vision).

• No (correct) NN schemes out there for it.

• Mahalanobis, !2
2 can be handled by metric methods.



Data sets

¥ rcv-D : 500k documents from the RCV corpus represented
as a D-dimensional distribution over topic (generated us-
ing LDA).

¥ Corel histograms : 60k color histograms, 64-dimensional.

¥ Semantic space: 371-dimensional representation of 5000
images (from CBIR literature)

¥ SIFT signatures : 1111-dimensional quantized histogram
representation of 10k images from PASCAL 2007 dataset



Speedup over brute-force search in execution time.

Approx search experiments  

NC for number closer: how many closer points are there?  e.g. if 
NC=3, the bbtree returned the fourth NN.

VS

Stop search early (after examining only a few leaves)
           -- standard practice with metric, kd-trees, etc. 

Evaluation



Approximate search
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rcv data
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corel, semantic space, SIFT
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Exact search

dataset dimensionality speedup
rcv-8 8 64.5
rcv-16 16 36.7
rcv-32 32 21.9
rcv-64 64 12.0
corel histograms 64 2.4
rcv-128 128 5.3
rcv-256 256 3.3
semantic space 371 1.0
SIFT signatures 1111 0.9
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