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Nearest neighbor search

(very large) database:

Pnd best match In

¥ NN methods ubiquitous, but expensive

¥ Many NN data structures designed to reduce the complexity,
mostly for metrics

¥ In learning, vision, text, use many non-metric measures; a
prominent example iIs the KL-divergence.

This work: a data structure designed for bregman divergences.




Bregman divergence def

For strictly convex f : R — R,

di (X,y) ! £(x)" f(y)"#$ f(y),x" y°

f




Bregman divergence examples

Mahalanobis (Q ! 0)
dr (x,y) = 3(Xx —y)' Q(x —)

I

KL-divergence Itakura Saito

di (X,y) = >_Xilog it dr (x,y) = -1 log 7! 1




Bregman divergences VS metrics

Metrics:

non-negativity symmetry triangle inequality

d(z,y) > 0 d(x,y) = d(y, x) d(z,y) +d(y,2) ! d(x,2)




Bregman divergences VS metrics

Metrics:

non-negativity symmetry triangle inequality

d(z,y) > 0 d(x,y) = d(y, x) d(z,y) +d(y,2) ! d(x,2)

Bregman divergences:

non-negativity triang\ inegdality

df(X,y)I 0 df(ﬂf,’y — f(yax)




Review: tree-based NN retrieval
e.g. kd-trees, metric trees, many many variants

Hierarchical space
decomposition

Search via branch and
bound exploration




Bregman ball trees

¥ Fundamental geometric unit: bregman ball.

B(M7R)I {:U : df(.fl?,,u) ) R}

¥ Need a reasonable build heuristic.

¥ CanOt use the triangle inequality for bounds.

¥Need to handle asymmetry of divergence.

(Not covered here -- see paper)




bbtree -- build

Intuition: at each level, want balls that are well separated & compact.

q

Can prune left node

Have to search both




bbtree -- build

Intuition: at each level, want balls that are well separated & compact.

q

Can prune left node

Have to search both

Build method: Deploy k-means hierarchically (top-down).

(k-means was generalized to bregman divergences in Banerjee et al. 2005)




bbtree -- search

Want to bnd the left NN:

argmin_ X d(x,q)

Branch & bound search:

1. Descend tree, choosing child whose mean is closes
to ¢. Ignorethe sibling.

. At leaf, compute distances to all points; call the near-
est the candidateNN z..

. Traverse back up tree; check the ignored nodes. If

( ) )

( .
dist to > di (xc,q) > min di (z,q) dist to
candidate i XEB (LR M bregman

: ball
g NN ) need to explore it. g )




Computing the bound

Need to check If

di (xc,q) > min_ d (z,q)
xeB (LR )




Computing the bound

Need to check If

d ,q) > min ds (x,
 (we,q) > _min_ di (z,0)

The bregman projection
onto a bregman ball

Convex, but need to compute it in time comparable
to evaluating an analytic expression




The !4 case

min
X

subjectto:  Zlz" w!'?# R
G /

Can compute projection analytically:

g Xp =0u+ (1! 0)q
Lp V2R

where | =
g — 1]

Easy because

(Xp is on line between U and @ J




The general case

mxin df (CIZ‘, Q)

subjectto: di(z,un)! R

\_

Something similar holds..




The general case

min - di (z,q)

subjectto: di(z,un)! R

\_

Something similar holds..

Claim 1: ! f(xp) =!! f(u) ") f(q).

-3 The !5 relationship is a special case since! f (x) = x.

Nearly as useful....




Since f strictly convex,

| f IS one-to-one.

Moreover, Iits inverse Is given by the gradient of

f*(y)! sup{"xX,y#$f (x)}.

Thus can recoverx, from Vf (Xp)




Notation: Vi (W)
VT (g)

o'+ (1 —0)d

L fi(x)), !"[0,1

Solution lies on this curve.




Algorithm

Bisection search on ! for X satistying d((x, 1) = R.
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Algorithm

Bisection search on ! for X satistying d(x, ) = R.
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e Can compute a solution to accuracy ¢ in log ,l steps.

e Each step requires 1 gradient evaluation and 1 divergence evaluation.

\Very fast.




But: DonOt actually need arexact solution.

Only need to _
di (zc,q) > min_ ds (z,
determine If: r (e, ) X €B (LR ) f (2, q)

(zc Is the current candidate NN)




But: DonOt actually need arexact solution.

Only need to _
di (zc,q) > min_ ds (z,
determine If: r (e, ) X €B (LR ) f (2, q)

(zc Is the current candidate NN)

l.e. upper and lower bounds sufbce

Lower bound: weak duality Upper bound: primal

L(!) of (xg,q)+1'j. dr (xg,1) — R di (x1, @ ' an(i;TR)df (X, Q)

min  df (X, q)

x! B(WR) for feasible x;

Evaluate bounds at each step of bisection to stop early.




Experiments: KL-divergence

Why KL divergence?

e Used extensively to compare histograms (e.g.text, vision).
e No (correct) NN schemes out there for it.

e Mahalanobis, /5 can be handled by metric methods.




Data sets

¥ rcv-D: 500k documents from the RCV corpus represented
as aD-dimensional distribution over topic (generated us-
ing LDA).

¥ Corel histograms : 60k color histograms, 64-dimensional.

¥ Semantic space: 371-dimensional representation of 500(
iImages (from CBIR literature)

¥ SIFT signatures: 1111-dimensional quantized histogram
representation of 10k images from PASCAL 2007 dataset




Approx search experiments

Stop search early (after examining only a few leaves)
-- standard practice with metric, kd-trees, etc.

Evaluation

Speedup over brute-force search in execution time.

VS

NC for number closer: how many closer points are there? e.g. if
NC=3, the bbtree returned the fourth NN.




Approximate search

rcv—-128

Speedup
(exponent)

0

num closer
(exponent)
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corel, semantic space, SIFT

Corel histograms Semantic space SIFT signatures
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Exact search

dataset

dimensionality

speedup

rcv-8

8

64.5

rcv-16

16

36.7

rcv-32

32

21.9

rcv-64

64

12.0

corel histograms

64

2.4

rcv-128

5.3

rcv-256

3.3

semantic space

1.0

SIFT signatures

0.9
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