Fast nearest neighbor retrieval for bregman divergences

Lawrence Cayton UC San Diego

Nearest neighbor search

query:

(very large) database:

find best match in X =

- NN methods ubiquitous, but expensive
- Many NN data structures designed to reduce the complexity, mostly for metrics
- In learning, vision, text, use many non-metric measures; a prominent example is the KL-divergence.

This work: a data structure designed for bregman divergences.

Bregman divergence def

For strictly convex $f : \mathbb{R}^d \to \mathbb{R}$,

$$d_f(x,y) \equiv f(x) - f(y) - \langle \nabla f(y), x - y \rangle$$

Bregman divergence examples

Mahalanobis ($Q \succ 0$)

 $d_f(x,y) = \frac{1}{2}(x-y)^{\top}Q(x-y)$

 $d_f(x,y) = \frac{1}{2} \|x - y\|_2^2$

 ℓ_2^2

KL-divergence $d_f(x, y) = \sum x_i \log \frac{x_i}{y_i}$

Itakura-Saito $d_f(x, y) = \sum \left(\frac{x_i}{y_i} - \log \frac{x_i}{y_i} - 1\right)$

Bregman divergences VS metrics

Metrics:

non-negativity $d(x,y) \ge 0$

symmetry

$$d(x,y) = d(y,x)$$

triangle inequality $d(x,y) + d(y,z) \ge d(x,z)$

Bregman divergences VS metrics

Metrics:

non-negativity	symmetry	triangle inequality
$d(x,y) \ge 0$	d(x,y) = d(y,x)	$d(x,y) + d(y,z) \ge d(x,z)$

Bregman divergences:

non-negativity

 $d_f(x,y) \ge 0$

triangle inequality $d_f(x,y) + d_f(y,z) \ge d_f(x,z)$

Review: tree-based NN retrieval *e.g.* kd-trees, metric trees, many many variants

Hierarchical space decomposition

Search via branch and bound exploration

Bregman ball trees

• Fundamental geometric unit: bregman ball.

 $B(\mu, R) \equiv \{x : d_f(x, \mu) \le R\}$

- Need a reasonable build heuristic.
- Can't use the triangle inequality for bounds.
- Need to handle asymmetry of divergence. (Not covered here -- see paper)

bbtree -- build

Intuition: at each level, want balls that are well separated & compact.

Have to search both

bbtree -- build

Intuition: at each level, want balls that are well separated & compact.

Have to search both

Build method: Deploy *k*-means hierarchically (top-down).

(*k*-means was generalized to bregman divergences in Banerjee *et al.* 2005)

bbtree -- search

Want to find the left NN:

 $\operatorname{argmin}_{x \in X} d_f(x, q)$

Branch & bound search:

- 1. Descend tree, choosing child whose mean is closest to *q*. *Ignore* the sibling.
- 2. At leaf, compute distances to all points; call the nearest the *candidate* NN x_c .
- 3. Traverse back up tree; check the ignored nodes. If

 $\rightarrow d_f(x_c, q) > \min_{x \in B(\mu, R)} d_f(x, q) \checkmark$

dist to bregman ball

need to explore it.

Computing the bound

Need to check if

 $d_f(x_c, q) > \min_{x \in B(\mu, R)} d_f(x, q)$

Computing the bound

Need to check if

Convex, but need to compute it in time comparable to evaluating an analytic expression

The
$$\ell_2^2$$
 case

$$\min_{x} \quad \frac{1}{2} \|x - q\|^{2}$$

subject to:
$$\frac{1}{2} \|x - \mu\|^{2} \le R$$

Can compute projection analytically:

$$x_p = \theta \mu + (1 - \theta)q$$

where $\theta = \frac{\sqrt{2R}}{\|q - \mu\|}$

Easy because

 x_p is on line between μ and q

The general case

$$\min_{x} \quad d_f(x,q)$$
subject to: $d_f(x,\mu) \le R$

Something similar holds..

The general case

$$\min_{x} \quad d_f(x,q)$$

subject to: $d_f(x,\mu) \le R$

Something similar holds..

Claim 1: $\nabla f(x_p) = \theta \nabla f(\mu) + (1 - \theta) \nabla f(q).$

• The ℓ_2^2 relationship is a special case since $\nabla f(x) = x$.

Nearly as useful....

Since *f* strictly convex,

∇f is one-to-one.

Moreover, its inverse is given by the gradient of

$$f^*(y) \equiv \sup_x \left\{ \langle x, y \rangle - f(x) \right\}.$$

Thus can recover x_p from $\nabla f(x_p)$

Notation:

$$\mu' \equiv \nabla f(\mu)$$

$$q' \equiv \nabla f(q)$$

$$x'_{\theta} \equiv \theta \mu' + (1 - \theta)q'$$

Algorithm

Bisection search on θ for x satisfying $d_f(x, \mu) = R$.

1.
$$\theta_1 = \frac{1}{2}$$

2. $\theta_2 = \frac{1}{4}$
3. $\theta_3 = \frac{3}{8}$
4. $\theta_4 = \frac{5}{16}$

Algorithm

Bisection search on θ for x satisfying $d_f(x, \mu) = R$.

- Can compute a solution to accuracy ϵ in $\log \frac{1}{\epsilon}$ steps.
- Each step requires 1 gradient evaluation and 1 divergence evaluation.

Very fast.

But: Don't actually need an exact solution.

Only need to determine if: $d_f(x_c, q) > \min_{x \in B(\mu, R)} d_f(x, q)$

(x_c is the current candidate NN)

But: Don't actually need an exact solution.

Only need to determine if: $d_f(x_c, q) > \min_{x \in B(\mu, R)} d_f(x, q)$

(x_c is the current candidate NN)

i.e. upper and lower bounds suffice

Lower bound: weak duality

Upper bound: primal

$$\mathcal{L}(\theta) \equiv d_f(x_{\theta}, q) + \frac{\theta}{1 - \theta} \Big(d_f(x_{\theta}, \mu) - R \Big) \qquad d_f$$
$$\leq \min_{x \in B(\mu, R)} d_f(x, q)$$

 $d_f(x_\theta, q) \ge \min_{x \in B(\mu, R)} d_f(x, q)$

for feasible x_{θ}

Evaluate bounds at each step of bisection to stop early.

Experiments: KL-divergence

Why KL divergence?

- Used extensively to compare histograms (*e.g.* text, vision).
- No (correct) NN schemes out there for it.
- Mahalanobis, ℓ_2^2 can be handled by metric methods.

Data sets

- **rcv**-*D*: 500k documents from the RCV corpus represented as a *D*-dimensional distribution over topic (generated using LDA).
- **Corel histograms**: 60k color histograms, 64-dimensional.
- Semantic space: 371-dimensional representation of 5000 images (from CBIR literature)
- **SIFT signatures**: 1111-dimensional quantized histogram representation of 10k images from PASCAL 2007 dataset

Approx search experiments

Stop search early (after examining only a few leaves) -- standard practice with metric, kd-trees, etc.

Evaluation

Speedup over brute-force search in execution time.

VS

NC for *number closer*: how many closer points are there? *e.g.* if NC=3, the bbtree returned the fourth NN.

rcv data

corel, semantic space, SIFT

Exact search

dataset	dimensionality	speedup
rcv-8	8	64.5
rcv-16	16	36.7
rcv-32	32	21.9
rcv-64	64	12.0
corel histograms	64	2.4
rcv-128	128	5.3
rcv-256	256	3.3
semantic space	371	1.0
SIFT signatures	1111	0.9

Thanks..

- Serge Belongie
- Sanjoy Dasgupta
- Charles Elkan
- Carolina Galleguillos
- Daniel Hsu
- Nikhil Rasiwasia
- Lawrence Saul